
Database Management Systems, R. Ramakrishnan and J. Gehrke 1

Relational Algebra and SQL

Johannes Gehrke
johannes@cs.cornell.edu

http://www.cs.cornell.edu/johannes

Slides from
Database Management Systems, 3rd Edition,

Ramakrishnan and Gehrke.

Database Management Systems, R. Ramakrishnan and J. Gehrke 2

Relational Query Languages

vQuery languages: Allow manipulation and retrieval
of data from a database.

v Relational model supports simple, powerful QLs:
– Strong formal foundation based on logic.
– Allows for much optimization.

vQuery Languages != programming languages!
– QLs not expected to be “Turing complete”.
– QLs not intended to be used for complex calculations.
– QLs support easy, efficient access to large data sets.

Database Management Systems, R. Ramakrishnan and J. Gehrke 3

Formal Relational Query Languages

v Two mathematical Query Languages form
the basis for “real” languages (e.g. SQL), and
for implementation:
– Relational Algebra: More operational, very useful

for representing execution plans.
– Relational Calculus: Lets users describe what they

want, rather than how to compute it. (Non-
operational, declarative.)

Database Management Systems, R. Ramakrishnan and J. Gehrke 4

Preliminaries

vA query is applied to relation instances, and the
result of a query is also a relation instance.
– Schemas of input relations for a query are fixed (but

query will run regardless of instance!)
– The schema for the result of a given query is also

fixed! Determined by definition of query language
constructs.

v Positional vs. named-field notation:
– Positional notation easier for formal definitions,

named-field notation more readable.
– Both used in SQL

Database Management Systems, R. Ramakrishnan and J. Gehrke 5

Example Instances

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

sid sname rating age
28 yuppy 9 35.0
31 lubber 8 55.5
44 guppy 5 35.0
58 rusty 10 35.0

sid bid day
22 101 10/10/96
58 103 11/12/96

R1

S1

S2

v “Sailors” and “Reserves”
relations for our examples.

v We’ll use positional or
named field notation,
assume that names of fields
in query results are
`inherited’ from names of
fields in query input
relations.

Database Management Systems, R. Ramakrishnan and J. Gehrke 6

Relational Algebra

Database Management Systems, R. Ramakrishnan and J. Gehrke 7

Relational Algebra
v Basic operations:

– Selection () Selects a subset of rows from relation.
– Projection () Deletes unwanted columns from relation.
– Cross-product () Allows us to combine two relations.
– Set-difference () Tuples in reln. 1, but not in reln. 2.
– Union () Tuples in reln. 1 and in reln. 2.

vAdditional operations:
– Intersection, join, division, renaming: Not essential, but

(very!) useful.
v Since each operation returns a relation, operations

can be composed! (Algebra is “closed”.)

σ
π

−
×

∪

Database Management Systems, R. Ramakrishnan and J. Gehrke 8

Projection
sname rating
yuppy 9
lubber 8
guppy 5
rusty 10

π sname rating S, ()2

age
35.0
55.5

πage S()2

v Deletes attributes that are not in
projection list.

v Schema of result contains exactly
the fields in the projection list,
with the same names that they
had in the (only) input relation.

v Projection operator has to
eliminate duplicates! (Why??)
– Note: real systems typically

don’t do duplicate elimination
unless the user explicitly asks
for it. (Why not?)

Database Management Systems, R. Ramakrishnan and J. Gehrke 9

Selection

σ rating S
>8 2()

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

sname rating
yuppy 9
rusty 10

π σsname rating rating S, (())
>8 2

v Selects rows that satisfy
selection condition.

v No duplicates in result!
(Why?)

v Schema of result
identical to schema of
(only) input relation.

v Result relation can be
the input for another
relational algebra
operation! (Operator
composition.)

Database Management Systems, R. Ramakrishnan and J. Gehrke 10

Union, Intersection, Set-Difference

v All of these operations take
two input relations, which
must be union-compatible:
– Same number of fields.
– `Corresponding’ fields

have the same type.
v What is the schema of result?

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age
31 lubber 8 55.5
58 rusty 10 35.0

S S1 2∪

S S1 2∩

sid sname rating age
22 dustin 7 45.0

S S1 2−

Database Management Systems, R. Ramakrishnan and J. Gehrke 11

Cross-Product
v Each row of S1 is paired with each row of R1.
v Result schema has one field per field of S1 and R1,

with field names `inherited’ if possible.
– Conflict: Both S1 and R1 have a field called sid.

ρ ((,),)C sid sid S R1 1 5 2 1 1→ → ×

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

Renaming operator:

Database Management Systems, R. Ramakrishnan and J. Gehrke 12

Joins
v Condition Join:

v Result schema same as that of cross-product.
v Fewer tuples than cross-product, might be

able to compute more efficiently
v Sometimes called a theta-join.

R c S c R S�� = ×σ ()

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

S RS sid R sid1 11 1�� . .<

Database Management Systems, R. Ramakrishnan and J. Gehrke 13

Joins

v Equi-Join: A special case of condition join where
the condition c contains only equalities.

v Result schema similar to cross-product, but only
one copy of fields for which equality is specified.

vNatural Join: Equijoin on all common fields.

sid sname rating age bid day
22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

S Rsid1 1��

Database Management Systems, R. Ramakrishnan and J. Gehrke 14

Division
vNot supported as a primitive operator, but useful for

expressing queries like:
Find sailors who have reserved all boats.

v Let A have 2 fields, x and y; B have only field y:
– A/B =
– i.e., A/B contains all x tuples (sailors) such that for every y

tuple (boat) in B, there is an xy tuple in A.
– Or: If the set of y values (boats) associated with an x value

(sailor) in A contains all y values in B, the x value is in A/B.
v In general, x and y can be any lists of fields; y is the

list of fields in B, and x y is the list of fields of A.

{ }AyxByx ∈∃∈∀ ,|

∪

Database Management Systems, R. Ramakrishnan and J. Gehrke 15

Examples of Division A/B

sno pno
s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2
s4 p2
s4 p4

pno
p2

pno
p2
p4

pno
p1
p2
p4

sno
s1
s2
s3
s4

sno
s1
s4

sno
s1

A

B1
B2

B3

A/B1 A/B2 A/B3

Database Management Systems, R. Ramakrishnan and J. Gehrke 16

Expressing A/B Using Basic Operators

vDivision is not essential op; just a useful shorthand.
– (Also true of joins, but joins are so common that systems

implement joins specially.)
v Idea: For A/B, compute all x values that are not

`disqualified’ by some y value in B.
– x value is disqualified if by attaching y value from B, we

obtain an xy tuple that is not in A.

Disqualified x values:

A/B:

Database Management Systems, R. Ramakrishnan and J. Gehrke 17

Find names of sailors who’ve reserved boat #103

v Solution 1: π σsname bid serves Sailors((Re))
=103 ��

Solution 2: ρ σ(, Re)Temp servesbid1 103=

ρ (,)Temp Temp Sailors2 1��

π sname Temp()2

Solution 3: π σsname bid serves Sailors((Re))
=103 ��

Database Management Systems, R. Ramakrishnan and J. Gehrke 18

Find names of sailors who’ve reserved a red boat

v Information about boat color only available in
Boats; so need an extra join:

π σsname color red Boats serves Sailors((' ') Re)
=

�� ��

A more efficient solution:

π π π σsname sid bid color red Boats s Sailors(((' ') Re))
=

�� ��

A query optimizer can find this, given the first solution!

Database Management Systems, R. Ramakrishnan and J. Gehrke 19

Find sailors who’ve reserved a red or a green boat

v Can identify all red or green boats, then find
sailors who’ve reserved one of these boats:

ρ σ(, (' ' ' '))Tempboats color red color green Boats
= ∨ =

π sname Tempboats serves Sailors(Re)�� ��

Can also define Tempboats using union! (How?)

What happens if is replaced by in this query?∨ ∧

Database Management Systems, R. Ramakrishnan and J. Gehrke 20

Find sailors who’ve reserved a red and a green boat

v Previous approach won’t work! Must identify
sailors who’ve reserved red boats, sailors
who’ve reserved green boats, then find the
intersection (note that sid is a key for Sailors):

ρ π σ(, ((' ') Re))Tempred sid color red Boats serves
=

��

π sname Tempred Tempgreen Sailors(())∩ ��

ρ π σ(, ((' ') Re))Tempgreen sid color green Boats serves
=

��

Database Management Systems, R. Ramakrishnan and J. Gehrke 21

Find the names of sailors who’ve reserved all boats

vUses division; schemas of the input relations
to / must be carefully chosen:

ρ π π(, (, Re) / ())Tempsids sid bid serves bid Boats

π sname Tempsids Sailors()��

To find sailors who’ve reserved all ‘Interlake’ boats:

/ (' ')π σbid bname Interlake Boats
=

.....

Database Management Systems, R. Ramakrishnan and J. Gehrke 22

SQL

Database Management Systems, R. Ramakrishnan and J. Gehrke 23

Basic SQL Query

• Default is that duplicates are not eliminated!
– Need to explicitly say “DISTINCT”

SELECT [DISTINCT] target-list
FROM relation-list
[WHERE condition]

SELECT S.Name
FROM Sailors S
WHERE S.Age > 25

SELECT DISTINCT S.Name
FROM Sailors S
WHERE S.Age > 25

Database Management Systems, R. Ramakrishnan and J. Gehrke 24

SQL Query

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0

SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

sid bid day
22 101 10/10/96
58 103 11/12/96

Sailors Reserves

Database Management Systems, R. Ramakrishnan and J. Gehrke 25

Conceptual Evaluation Strategy

• Semantics of an SQL query defined in terms of the
following conceptual evaluation strategy:
– Compute the cross-product of relation-list
– Discard resulting tuples if they fail condition.
– Delete attributes that are not in target-list
– If DISTINCT is specified, eliminate duplicate rows.

• This strategy is probably the least efficient way to
compute a query!
– An optimizer will find more efficient strategies to

compute the same answers.

Database Management Systems, R. Ramakrishnan and J. Gehrke 26

Example of Conceptual Evaluation
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

(sid) sname rating age (sid) bid day
22 dustin 7 45.0 22 101 10/10/96
22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 22 101 10/10/96
31 lubber 8 55.5 58 103 11/12/96
58 rusty 10 35.0 22 101 10/10/96
58 rusty 10 35.0 58 103 11/12/96

Database Management Systems, R. Ramakrishnan and J. Gehrke 27

A Slightly Modified Query

• Would adding DISTINCT to this query make a
difference?

SELECT S.sid
FROM Sailors S, Reserves R
WHERE S.sid=R.sid AND R.bid=103

Database Management Systems, R. Ramakrishnan and J. Gehrke 28

Find sid’s of sailors who’ve reserved a red or a green boat

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND (B.color=‘red’ OR B.color=‘green’)

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
UNION
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

Database Management Systems, R. Ramakrishnan and J. Gehrke 29

What does this query compute?

SELECT S.sid
FROM Sailors S, Boats B1, Reserves R1, Boats B2, Reserves R2
WHERE S.sid=R1.sid AND R1.bid=B1.bid AND

S.sid=R2.sid AND R2.bid=B2.bid AND
B1.color=‘red’ AND B2.color=‘green’

Database Management Systems, R. Ramakrishnan and J. Gehrke 30

Find sid’s of sailors who’ve reserved a red and a green boat

SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘red’
INTERSECT
SELECT S.sid
FROM Sailors S, Boats B, Reserves R
WHERE S.sid=R.sid AND R.bid=B.bid

AND B.color=‘green’

Key field!

• What if INTERSECT were replaced by EXCEPT?
– EXCEPT is set difference

Database Management Systems, R. Ramakrishnan and J. Gehrke 31

Expressions and Strings

• Find triples (of ages of sailors and two fields defined by
expressions) for sailors whose names begin and end with B
and contain at least three characters.

• AS is used to name fields in result.
• LIKE is used for string matching

– `_’ stands for any one character
– `%’ stands for 0 or more arbitrary characters.

SELECT S.age, S.age-5 AS age2, 2*S.age AS age2
FROM Sailors S
WHERE S.sname LIKE ‘B_%B’

Database Management Systems, R. Ramakrishnan and J. Gehrke 32

Nested Queries (with Correlation)

SELECT S.sname
FROM Sailors S
WHERE EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Find names of sailors who have reserved boat #103:

Database Management Systems, R. Ramakrishnan and J. Gehrke 33

Nested Queries (with Correlation)

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT *

FROM Reserves R
WHERE R.bid=103 AND S.sid=R.sid)

Find names of sailors who have not reserved boat #103:

Database Management Systems, R. Ramakrishnan and J. Gehrke 34

Division in SQL

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS ((SELECT B.bid

FROM Boats B)
EXCEPT
(SELECT R.bid
FROM Reserves R
WHERE R.sid=S.sid))

Find sailors who’ve reserved all boats

Database Management Systems, R. Ramakrishnan and J. Gehrke 35

Division in SQL (without Except!)

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS (SELECT B.bid

FROM Boats B
WHERE NOT EXISTS (SELECT R.bid

FROM Reserves R
WHERE R.bid=B.bid

AND R.sid=S.sid))

Sailors S such that ...

there is no boat B without ...

a Reserves tuple showing S reserved B

Find sailors who’ve reserved all boats.

Database Management Systems, R. Ramakrishnan and J. Gehrke 36

More on Set-Comparison Operators

� op ANY, op ALL
– op can be

� Find sailors whose rating is greater than that of all
sailors called Horatio:

> < = ≥ ≤ ≠, , , , ,

SELECT *
FROM Sailors S
WHERE S.rating > ALL (SELECT S2.rating

FROM Sailors S2
WHERE S2.sname=‘Horatio’)

Database Management Systems, R. Ramakrishnan and J. Gehrke 37

Aggregate Operators
� Significant extension of relational algebra.

COUNT (*)
COUNT ([DISTINCT] A)
SUM ([DISTINCT] A)
AVG ([DISTINCT] A)
MAX (A)
MIN (A)

SELECT AVG (S.age)
FROM Sailors S
WHERE S.rating=10

SELECT COUNT (*)
FROM Sailors S

single column
SELECT COUNT (DISTINCT S.rating)
FROM Sailors S
WHERE S.sname=‘Bob’

Database Management Systems, R. Ramakrishnan and J. Gehrke 38

Find name and age of the oldest sailor(s)
with rating > 7

SELECT S.sname, S.age
FROM Sailors S
WHERE S.Rating > 7 AND

S.age = (SELECT MAX (S2.age)
FROM Sailors S2
WHERE S2.Rating > 7)

Database Management Systems, R. Ramakrishnan and J. Gehrke 39

Aggregate Operators

v So far, we’ve applied aggregate operators to all
(qualifying) tuples

v Sometimes, we want to apply them to each of
several groups of tuples.

v Consider: Find the age of the youngest sailor for each
rating level.
– If rating values go from 1 to 10; we can write 10

queries that look like this:
SELECT MIN (S.age)
FROM Sailors S
WHERE S.rating = i

For i = 1, 2, ... , 10:

Database Management Systems, R. Ramakrishnan and J. Gehrke 40

GROUP BY

SELECT [DISTINCT] target-list
FROM relation-list
[WHERE condition]
GROUP BY grouping-list

Find the age of the youngest sailor for each rating level

SELECT S.rating, MIN(S.Age)
FROM Sailors S
GROUP BY S.rating

Database Management Systems, R. Ramakrishnan and J. Gehrke 41

Conceptual Evaluation Strategy

• Semantics of an SQL query defined as follows:
– Compute the cross-product of relation-list
– Discard resulting tuples if they fail condition.
– Delete attributes that are not in target-list
– Remaining tuples are partitioned into groups by the

value of the attributes in grouping-list
– One answer tuple is generated per group

• Note: Does not imply query will actually be
evaluated this way!

Database Management Systems, R. Ramakrishnan and J. Gehrke 42

Find the age of the youngest sailor with age 18,
for each rating with at least one such sailor

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating

sid sname rating age
22 dustin 7 45.0
31 lubber 8 15.5
71 zorba 10 16.0
64 horatio 7 35.0
29 brutus 1 33.0
58 rusty 10 35.0

rating
1 33.0
7 35.0
10 35.0

Answer relation

≥

sid sname rating age
29 brutus 1 33.0
22 dustin 7 45.0
64 horatio 7 35.0
58 rusty 10 35.0

Database Management Systems, R. Ramakrishnan and J. Gehrke 43

Are These Queries Correct?

SELECT MIN(S.Age)
FROM Sailors S
GROUP BY S.rating

SELECT S.name, S.rating, MIN(S.Age)
FROM Sailors S
GROUP BY S.rating

Database Management Systems, R. Ramakrishnan and J. Gehrke 44

What does this query compute?

SELECT B.bid, COUNT (*) AS scount
FROM Reserves R, Boats B
WHERE R.bid=B.bid AND B.color=‘red’
GROUP BY B.bid

Database Management Systems, R. Ramakrishnan and J. Gehrke 45

Find those ratings for which the average
age is the minimum over all ratings

SELECT Temp.rating, Temp.avgage
FROM (SELECT S.rating, AVG (S.age) AS avgage

FROM Sailors S
GROUP BY S.rating) AS Temp

WHERE Temp.avgage = (SELECT MIN (Temp2.avgage)
FROM (SELECT AVG(S.age) as avgage

FROM Sailors S
GROUP BY S.rating) AS Temp2

)

Database Management Systems, R. Ramakrishnan and J. Gehrke 46

What does this query compute?

SELECT Temp.rating, Temp.minage
FROM (SELECT S.rating, MIN (S.age) AS minage, COUNT(*) AS cnt

FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating) AS Temp

WHERE Temp.cnt >= 2

Database Management Systems, R. Ramakrishnan and J. Gehrke 47

Queries With GROUP BY and HAVING

SELECT [DISTINCT] target-list
FROM relation-list
[WHERE qualification]
GROUP BY grouping-list
HAVING group-qualification

Find the age of the youngest sailor with age >= 18
for each rating level with at least 2 such sailors

SELECT S.rating, MIN(S.Age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT(*) >= 2

Database Management Systems, R. Ramakrishnan and J. Gehrke 48

Conceptual Evaluation Strategy

• Semantics of an SQL query defined as follows:
– Compute the cross-product of relation-list
– Discard resulting tuples if they fail condition.
– Delete attributes that are not in target-list
– Remaining tuples are partitioned into groups by the value

of the attributes in grouping-list
– The group-qualification is applied to eliminate some groups
– One answer tuple is generated per qualifying group

• Note: Does not imply query will actually be
evaluated this way!

Database Management Systems, R. Ramakrishnan and J. Gehrke 49

Find the age of the youngest sailor with age 18,
for each rating with at least 2 such sailors

v Only S.rating and S.age are
mentioned in the SELECT,
GROUP BY or HAVING clauses;
other attributes `unnecessary’.

v 2nd column of result is
unnamed. (Use AS to name it.)

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING COUNT (*) > 1

sid sname rating age
22 dustin 7 45.0
31 lubber 8 55.5
71 zorba 10 16.0
64 horatio 7 35.0
29 brutus 1 33.0
58 rusty 10 35.0
rating age

1 33.0
7 45.0
7 35.0
8 55.5
10 35.0

rating
7 35.0

Answer relation

≥

Database Management Systems, R. Ramakrishnan and J. Gehrke 50

Find the age of the youngest sailor with age >= 18,
for each rating with at least 2 sailors (of any age)

SELECT S.rating, MIN (S.age)
FROM Sailors S
WHERE S.age >= 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)

FROM Sailors S2
WHERE S.rating=S2.rating)

Database Management Systems, R. Ramakrishnan and J. Gehrke 51

Find the average age for each rating, and
order results in ascending order on avg. age

SELECT S.rating, AVG (S.age) AS avgage
FROM Sailors S
GROUP BY S.rating
ORDER BY avgage

ORDER BY can only appear in top-most query
• Otherwise results are unordered!

Database Management Systems, R. Ramakrishnan and J. Gehrke 52

Null Values

• Field values in a tuple are sometimes unknown
– e.g., a rating has not been assigned

• Field values are sometimes inapplicable
– e.g., no spouse’s name

• SQL provides a special value null for such
situations.

Database Management Systems, R. Ramakrishnan and J. Gehrke 53

Queries and Null Values

• What if S.Age is NULL?
– S.Age > 25 returns NULL!

• Implies a predicate can return 3 values
– True, false, NULL
– Three valued logic!

• Where clause eliminates rows that do not
return true (i.e., which are false or NULL)

SELECT S.Name
FROM Sailors S
WHERE S.Age > 25

Database Management Systems, R. Ramakrishnan and J. Gehrke 54

Three-valued Logic

• What if one or both of S.age and S.rating are NULL?

SELECT S.Name
FROM Sailors S
WHERE NOT(S.Age > 25) OR S.rating > 7

A/B True False NULL
True True True True
False True False NULL
NULL True NULL NULL

A NOT(A)
True False
False True

NULL NULL

NOT Truth Table OR Truth Table

Database Management Systems, R. Ramakrishnan and J. Gehrke 55

General Constraints

v Useful when
more general
ICs than keys
are involved

v Can use queries
to express
constraint

v Constraints can
be named

CREATE TABLE Reserves
(sname CHAR(10),
bid INTEGER,
day DATE,
PRIMARY KEY (bid,day),
CONSTRAINT noInterlakeRes
CHECK (`Interlake’ <>

(SELECT B.bname
FROM Boats B
WHERE B.bid=bid)))

Database Management Systems, R. Ramakrishnan and J. Gehrke 56

Constraints Over Multiple Relations

CREATE ASSERTION smallClub
CHECK
((SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT (B.bid) FROM Boats B) < 100)

Number of boats
plus number of
sailors is < 100

Database Management Systems, R. Ramakrishnan and J. Gehrke 57

Summary

v The relational model has rigorously defined query
languages that are simple and powerful.

v Relational algebra is more operational; useful as
internal representation for query evaluation plans.

v Several ways of expressing a given query; a query
optimizer should choose the most efficient version.

v SQL is the lingua franca for accessing database
systems today.

