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Crashi course on preteins

Proteins are one-dimensienal polymers

Made of 20 types of monemers (amine acids) with
different side chains (ACDEEG...) but the same

packihone
Fold inte a well defined 3D shape that includes

secondary structure elements (lhelices, sheets)

TThey are the machines of the smallest living
entities (cells)
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Why pretein structures? Seguence
determines 3D shape. Shape determines
filinction.

ACDEEFGHIJKLMNPQ

Drug design....

)

S

Active site!
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Appreaches to determine protein structure

™
= Experiment (X-ray, NMR): months g/\
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= Modeling the chemical physics Weeks

/\/ . @W
= Homology based modeling: hours
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Structures Are Evolutionary
Templates

High degree of
structural similarity Oxygen Transport Proteins
IS often observed In
proteins with
diverse sequences
and in different
species (below
noise level — 15
percent sequence

Identity).
dentity) Leghemoglobin in Plants

Myoglobin in Mammals
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Three steps in homology modeling

= |dentify a structural
template te unknewn

Seguence
ACEFGH.... < —)

seguence to the

= Align the unknown A - CD W L K
structural template A R C - F L R

= Build an atemic model
pased on the template
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Measures, ofi tertiary
Structure fitness

Instead of direct seguence comparisen

1BIN:A 2/3 AFTEKQDALVSSSFEAFKANIPQYSVVFYTSILEKAPAAKDLFSFLANG VDPTNP
IMBC: _ 1/2 VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFKHLKTEAEMKASE-

1BIN:A 57/58 KLTGHAEKLFALVRDSAGQLKASGTVV—ADAALGSVHAQKAVTDPQFVVVKEALLKTIK
IMBC: _ 60/61 DLKKHGVTVLTALGAILKKK---GHHEAELKPLAQSHATKHKIPIKYLEFISEAI IHVLH

1BIN:A 115/116 AAVGDKWSDELSRAWEVAYDELAAAIKKA
IMBC: _ 117/118 SRHPGDFGADAQGAMNKALELFRKDIAAK

Match unknown seguence to a KNnOWN structure of a sequence

AFTEKQDALVSSSFEAFKANIPQYSVVFYTSILE
KAPAAKDLFSFLANGVDPTNPKLTGHAEKLFA
LVRDSAGQLKASGTVVADAALGSVHAQKAVT
DPQFVVVKEALLKTIKAAVGDKWSDELSRAW =)y
EVAYDELAAAIKKA
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— structure— function

= Testing folds
ISTHISMYSHAPE

T

= Find homologs
ANYRELATIVES

PERHAPSIAM
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A Machine LLeaming Algenthm to
Match a Preteln Seguence to a
IHomoleg Structure

= Potential design: Fermulation and
application

= Generating and! leaming alignments

= Applications
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Potentiall design

Pair or Contact potetial %
E =Dy, (% P)

’rofile potential

E:Zui(xi;P)
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DESIGNING ACCURATE FOLDING POTENTIALS

Statistical potentlals Z—score optimization

p(AE) p(AE)

AE AE
€ = -1n ® b.fpa pb;l <AFE>/G —» max

Linear Programming approach

E
1L P AE)
O -"xl
=l nati-re % 5
Xfalse positives AE
AE =R G o > 0 for all alternative {decoy) structures
dec oy aat
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Learning the foldl that matches a
seguence from the set of all known

StrUctures

E(S,,X;;P)-E(S,,X,;P)>0

93
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Leaming| felds: Eindla potentiall that
[ecognizes the native fold

E(S,,X;;P)-E(S,,X,;P)>0

E(X)=Xp f (X)

Econtact = Z na pa
04

11/13/2006




Mathematical Programming approach to potential design
(contact energies)

Interior point, SVM

E :Zﬂj :Zna pa

I>]

AG =B —Eg>1
= :ZInL —nf“) p, =An-p>1

sthjectto | p” =i

pis the unknown
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Creating decoy structures (inequalities)

by gapless threading:

Sw
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Learning the correct foeld
UsSing 60 million compansens
pPetween native and wrong structures

E(S,,X;)-E(S,,X,)>0 i=1,..,60000000

alaa a
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General pairwise potentials are insufficient to recognize correct
protein fold for a large set of protein-like structures (13 steps
optimized independently lead to infeasibility):

Tobi & Elber, Proteins 41,40-46(2000)

A

Pairwise potentials are better than profile models
(to be shown) but still not good enough. Need statistical
enhancements of the signal.
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Threading Onion Model
(THONM2)

An Improved profile moedel that mixes the
ACCUracy of pairnwvise energies and the
EfliICIENCY Of profilerenengies.

Defining effective pair energies in terms of

structural fingerprints of sites In contact ...



Threading Cnion Model

with the first and second contact shells (THCOM 2)

Cc-EOQMnEEZdnHAE K QBT

B = .2 L kn;mgu(n,m)

o n,m

Contact between a site of n neighbours
and occupied by an amino acid of type «
with a site of m neighbours contributes Ea{n,m}
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TIHONMZ2 yields effective pair Interactions,
maintaining the efficiency: or proefile
moedels.

Comparable performance to contact potentials
(with 300 parameters) in terms of self-recognition

LP'derived optimal parameters (interior point
algorthms!)

Optimal alignments with gaps feund using
dynamic programming

= Need for gap penalties for family recognition ...
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Alignment

Even If we identify’ a homolog, the preblem; of
structural medeling| Is not selved. An accurate
alignment Is crucial for successiul medeling.

Also the presence of gaps can make the
identification more difficult

a1a2__asa4
X1X2X3X4X5_

If we need gaps we call the fithess function — score (instead of energy)

and denote it by
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An alignment IS a pathin a dynamic
programming table
Ci

a, a, a, a,

3g > 49 — 5¢
oo

\

N
\
N
\
N
\
N
\

— 43 -1 -1 -

%

Finding the optimal alignment is quadratic in the protein length

using Dynamic Programmin
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Dynamics programming
Eind optimal alignment fer a given
Set of parameters

T (n m) The optimal score for aligning a sequence length n
’ against a sequence length m

If we had the optimal scores for the following earlier alignments:

T(n-1m-1))
T(n-1m)
T(n,m-1)

can we construct the score ?

T(n,m)

Yes...
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Dynamic programming: Continue
We consider three possibilities to obtain an alignment of n against m amino acids.

Option A: align n-1 against m-1 amino acids score [ (n -1m —1) extend
the alignment by a(n)/b(m) with a score S(an,bm)
T(n-1L,m-1)+S(a,.b,)
Option B: align n amino acids against m-1 amino acids with a score T (n,m—1)
extend the alignment by -/(b(m) with a score g for a gap

T(n,m-1)+g

Option C: align n-1 amino acids against m amino acids with a score T (n -1 m)
Extend the alignment by a(n)/- with a corresponding score of g

T(n-1m)+g

To decide which of the three options is optimal we need to compare the score
of the three options A, B, C
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Dynamic programming: Decision

T(h-Lm-1)+S(a,b,)

n!=m

T(n,m-1)+g
T(n-1,m)+g
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HoOW: to start??

And continue (for example...) by

T(a,-)+9
T(a,b)=max| T(-b)+0

T(0,0)+S(a,b)
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13 step potential one of the best around
(tested on the Baker’s set, 65 sets —
Tamara Galor)

aver. pos. # correct Z score

27 40 4.3

\UN 150 23 2.1

HL 163 15 2.0

SK 158 11 1.8

BT 148 15 2.0
1nszed HOMZ 106 15 2.0




Need for statistical verification of
predictions:

= Scoring according to an energy may. be
Insufficient (good matches by similar
length or composition)

= Z-score: a convenient measure of the
strength of a match in terms of
distribution ofi energies for random
alignments
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Joint Z-score (global andllocall threading)
distibution:




Family recognition: POU-like domains

RMS [Ang]

Mon-redundant set of POU-like domains

F3 g g 10 11

threading Z-score (global+local)




Family recognition: immunoglobins

a | | | | | | T [, s I g 1

RMS [Ang]
e}
&
@

10 | <
Mon-redundant set of immunoglobin {fv) domains
" F =

| | | | | | | | | |
0 1 2 3 4 5 B 7 8 g 10 11

threading £-score (global+local)




Sample LOOPP Predictions
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Predictions for difficult targets CAFASP &
CASP:
T102 (70 res) T116 2 (121 res)

Model 1: 1b0o9, 34 res with 2.5 A, 44 res Model 1: 1a0cA, 50 res with 2.9 A,
with 3.1 A, 12t best (1st) model (M. Sippl), 2nd pest (1st) model (M. Sippl)

1nkl among best matches as well




predictions for difficult targets:

T097 (104 res).
Model 1: 2hfh, 39 res with 3.3 A Model 2: 3itr, 54 res with 3.2 A

Matching into complementary sub-domains: model 1 - “good for that
target” (A. Lesk), model 2 - 11" best (among 15t and 2"4 models, M.

Sippl)




CASP prediction: Tfarget T0280
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Best
Other
RMSD

1.3
0.48

0.7

2.9
4.6
2.1

1.8

2.8

2.3

1.5

2.2

1.0
1.4

Is the best hit RMSD
chosen? of best
hit

Best hit not chosen  1.01
Best hit chosen 0.47

Best hit chosen 0.86

Best hit not chosen  2.68
Best hit not chosen 2.42
Best hit chosen 1.55

Best hit chosen 2.12

Best hit chosen

No good hit*

No good hit

Best hit chosen

Best hit not chosen

Best hit not chosen

If best hit is not
chosen, is one of
the chosen hits
true hits?

Yes
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CASP7
Target
283
289

296
299

300

301
304

306
307

309

Sometimes we do really bad...

Best Loopp
RMSD

8.4

7.4

Best other
RMSD
5.8
6.2

5.1
5.0

1.2

8.0
4.9

9.3
6.6

7.0

Reason for Loopp going wrong

Hit present in DB but wrong parent
Chosen

Hit present in DB but wrong parent
Chosen

No true hit in database

Hit present in DB but wrong parent
Chosen

Hit present in DB but wrong parent
Chosen

No true hit in database

Hit present in DB but wrong parent
Chosen

No true hit in database

Hit present in DB but wrong parent
Chosen

No true hit in database




SttICtUE: preaiCion fie)f a temaie; it
Welght pretein

= OREX gene, controlling the size of a
tomato fruit, has been predicted to
share structural similanty with human

Ras P21 (work in collaboration with Tanksley’s
group, Cornell, Science 289,85-89(2000))
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Phylegeny: ofi Lycopersicon

self-compatible

red fruit
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r - - - - - - - -

esculentum var esculentum

esculentum var cerasiforme
cheesmanii
pimpinellifolium
chnielewskii

parviflorum

chilense

pennellii

hirsutum

. peruvianum




Chromoesome 2

TG608
TG189

CT205
TG554

stuffer

TG493
TG266
TG469

TG463
CT9

TG337

TG48

TG34
TGI1

fw2.1,2.2,2.3 TG167
TG151

CT59

TG154
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HUman Ras p2i

= olecular switchi based on
G TP hydrelysis

= Cellular growth control and
cancer

= Ras oncogene: single point
mutatiens at pesitions
Gly12 or GIn61




LOOPP prediction for tomato ORFX

ORFX Is predicted to have a structure simllar to G—proteln:

# Global and local alignments of ORFX sequence to ras 6g21 A structure are
conslstent and Indicate very good matching.

Other good local allgnments are to domalns of simllar topology.

\'i
L
5
E
G
E
w
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v
L
H
v

# Statistical significance of both global and local alignments 15 high — Z—-score of

3.2 and 4.0, respectively. We never observed false positives with such Z-scores.

# Hydrophoblclty proflle Indicates that ORFX |s a soluble proteln.

# Independent secondary structure predictions Indlcate alpha’beta type with
positlons of loops consistent with that of ras {PsiIPred, PHD, Predator).

# Plausible counterparts of the cruclal Switch | and Switch |l loops are
conserved In the multiple allgnments to ORFX homologs.

# Ras actlve site fingerprint {TFGQ Instead of TAGQ) Is found In Switch Il loop.
Ras metal coordination sites and nucleotide binding sltes are found In the
predicted ORFX counterparts of P-loop, Switch | and Loop 5.




Yet bIgger tomatees ...
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