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Due to appear January 2007 !

The scope of Population Genetics

• Why are the patterns of variation as they are?  
(mathematical theory)

• What are the forces that influence levels of 
variation?

• What is the genetic basis for evolutionary 
change?

• What data can be collected to test hypotheses 
about the factors that impact allele 
frequency?

• What is the relation between genotypic 
variation and phenotype variation?

Forces acting on allele frequencies in 
populations

• Mutation
• Random genetic drift
• Recombination/gene conversion
• Migration/Demography
• Natural selection

Genotype and Allele frequencies

Genotype frequency: proportion of each genotype in the 
population

Genotype Number Frequency
B/B 114 114/200 = 0.57
B/b 56 56/200 = 0.28
b/b 30 30/200 = 0.l5
Total 200 1.00

Frequency of an allele in the population is equivalent to the 
probability of sampling that allele in the population.

Let p = freq (B) and q = freq (b)

p + q = 1

p = freq (B) = freq (BB) + ½ freq (Bb)
q = freq (b) = freq (bb) + ½ freq (Bb)

p = freq (B) = freq (BB) + ½ freq (Bb) = 0.57+0.28/2 =0.71
q = freq (b) = freq (bb) + ½ freq (Bb) = 0.15 + 0.28/2 = 0.29

Gene Counting
p = count of B alleles/total = (114 x 2 + 56)/400 = 0.71
q = count of b alleles/total = (30 x 2 + 56)/400 = 0.29

Genotype Number
B/B 114
B/b 56
b/b 30
Total 200
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Hardy-Weinberg Principle

For two alleles of an autosomal gene, B and b, the 
genotype frequencies after one generation

freq(B) = p freq(b) = q

freq (B/B) = p2

freq (B/b) = 2pq
freq (b/b) = q2

Gene frequencies of offspring can be predicted from 
allele frequencies in parental generation

Assumptions of Hardy Weinberg

•Approximately random mating

•An infinitely large population

•No mutation 

•No migration into or out of the population

•No selection, with all genotypes equally viable and 
equally fertile

Graphical proof of Hardy Weinberg Principle

B b

Eggs

Sperm

B

b

p2 pq

pq q2

freq (B) =
p2 + ½ (2pq)
= p (p+q)
= p (1) = p

freq (b) =
q2 + ½ (2pq)
= q (p + q )
= q(1) = q

Freq of alleles in 
offspring

SNPs in the ApoAI/CIII/AIV/AV region of chromosome 11

Hardy-Weinberg tests for Quality Control
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Heterozygotes are being under-called (Boerwinkle et al.)

MM M/N N/N Total
Num. Individuals 1787 3037 1305 6129
Number M alleles 3574 3037 0 6611
Number N alleles 0 3037 2610 5647
Number M+N 3574 6074 2610 12258
Allele freq of M = 6611/12,258 = 0.53932 = p
Allele freq of N = 5647/12,258 = 0.46068 = q
Expected freq p2 = 0.29087 2pq=0.49691 q2 = 0.21222 1.00
Expected # 1782.7 3045.6 1300.7 6129
(freq x 6129)
χ2  = ∑(observed number – expected number)2

expected number
χ2 = (1787 – 1782.7)2 + (3037 – 3045.6)2 + (1305 – 1300.7)2 = 0.04887

1782.7 3045.6 1300.7
Df = number of classes of data (3) – number of parameters estimated (1) –1 = 1 df

Probability of a chi-square this big or bigger = .90

Example from MN blood typing
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Hardy-Weinberg tests on steroids – the Affy 500k chip

HW deviation = observed – expected heterozygosity

Extensions of the Hardy-Weinberg 
Principle

• More than two alleles
• More than one locus
• X-chromosome
• Subdivided population

Mutation

• What is the pattern of nucleotide changes?
• Is the pattern of mutations homogeneous 

across the genome?
• Are sites within a gene undergoing 

recurrent mutation?

CARDIA STUDY
Locations of Chromosome 11 SNPs Genotyped in the AV/AIV/CIII/AI Gene Cluster

(colored sites in both studies)

* This part of the exon is not 
translated
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01280

01564
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01899
01962
02110

02954
02957
03132
03253

03581
03613
03710
03732
03784
03789
03923
04022
04202
04281

04699
04797

05124

ApoAI

166.32

153.37

AI

136.8388.77114.98183.83Std

130.05101.20124.39163.18Mean

ALLCIIIAIVAV

Average Distance between SNPs (Fullerton 124)

210.34

255.61

AI

193.00140.39123.14285.32Std

195.03162.24143.06239.33Mean

ALLCIIIAIVAV

Average Distance between SNPs (CARDIA 80)

06156
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07179
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08080
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09615
09616
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05904

*

ApoCIII

14953

15239
15289
15423

15830

15940
15941
16081

16131
16199

16481
16600
16736
16742
16751
16845
16960
16970
17001

17366
17528
17619
17660
17766
17814

ApoAIV

This site is NOT 
included in 

Fullerton 124

27376
27450

28301

29009

29928

30966

30763
30730
30648
30603

29590

29085

28975
28943

28837

28631

27820

27741
27709
27690
27673
27565

ApoAV

30862 23/16

24/19

46/26

31/19

124/80†

† # Fullerton / # CARDIA

Mutation and Random Genetic Drift

• The primary parameter for drift is Ne.
• Mutation adds variation to the population, 

and drift eliminates it.
• These two processes come to a steady state 

in which the standing level of variation is 
essentially constant.

Observed and expected numbers of 
segregating sites

(Lipoprotein lipase, LPL)

observed
expected
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Nucleotide site frequency spectrum
(LPL)

Migration and Population 
Structure

• Does the Hardy-Weinberg principle 
hold for a population that is subdivided 
geographically?

• What is the relation between SNP 
frequency, age of the mutation, and 
population structure?

• Given data on genetic variation, how 
can we quantify the degree of 
population structure?

Population heterogeneity in 
haplotype frequencies (ApoE)
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Quantifying population structure

• Suppose there are two subpopulations, with 
allele frequencies (p1,q1) and (p2,q2) and 
average allele frequencies (P and Q).

• HT = 2PQ = heterozygosity in one large 
panmictic population

• HS = (2p1q1+2p2q2)/2 is average 
heterozygosity across populations

• FST = (HT-HS)/HT

Note – unequal sample sizes require more calculation
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Figure 2

Average FST for human SNPs is 0.08
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Pritchard et al. method for inferring 
population substructure

• Specific number of subdivisions.
• Randomly assign individuals.
• Assess fit to HW.
• Pick an individual and consider a swap.
• If fit improves, accept swap, otherwise 

accept with a certain probability.
• Markov chain Monte Carlo – gets best 

fitting assignment.

Rosenberg NA, Pritchard JK, Weber JL, Cann HM, 
Kidd KK, Zhivotovsky LA, Feldman MW. 2002 
Genetic structure of human populations. 
Science. 298:2381-2385. 

Inference of K
European The human mitochondrial genome – 16,659 bp

www.mitomap.org
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MELAS: mitochondrial myopathy encephalomyopathy lactic acidosis and stroke

Fine-structure mapping of mitochondrial defects
Major human migrations inferred from mtDNA sequences

ACATGCTGACTGACATGCTAGCTGA
GATGCTGACTGACATTCTA

ATGCTGACTGACATTCTAG
TGCTGACTGACATGCTAGC
TGCTGACTGACATGCTAGCT

GCTGACTGACATTCTAGCT
CTGACTGACATGCTAGCTGA

Genome-wide SNP discovery Ssaha SNP  

• Sequence Search and Alignment by Hashing 
Algorithm.

• Align reads; apply ad hoc filters to call SNPs
• http://www.sanger.ac.uk/Software/analysis/S

SAHA/

Distribution of SNP Density Across the Genome Observed SNP Distribution is not Poisson

!
).Pr(

x
eSNPsx

x λλ −

=
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• Time to common ancestry for a random pair of 
alleles is distributed exponentially.

• So the Poisson parameter varies from one region 
to another.

• Because the time to common ancestry varies 
widely, the expected number of segregating 
mutations varies widely as well.

• But variation in ancestry time is not sufficient to 
explain the magnitude of variation in SNP density.

Why the Poisson distribution fits badly
Celera SNPs and Celera - PFP SNPs

Celera SNPs
Celera - PFP

Similar inference from Celera-only as from Celera vs. public SNPs

Nucleotide diversity ( x 10-4)  by chromosome

1 7.29 13 7.75
2 7.39 14 7.32
3 7.46 15 7.84
4 7.84 16 8.85
5 7.42 17 7.92
6 7.83 18 7.76
7 8.03 19 9.04
8 8.06 20 7.69
9 8.14 21 8.54
10 8.26 22 8.19
11 7.89 X 4.89
12 7.55 Y 2.82

Mixture models allowing heterogeneity in mutation 
and recombination can fit the data well

Sainudiin et al, submitted

Mutation-drift balance: the null model

•Model with pure mutation

•The Wright-Fisher model of drift

•Infinite alleles model

•Infinite sites model

•The neutral coalescent

Motivation

• Are genome-wide data on human SNPs
compatible with any particular MODEL?

• Perhaps more useful -- are there models 
that can be REJECTED ?

• Models tell us not only about what genetic 
attributes we need to consider, they also 
can provide quantitative estimates for 
rates of mutation, effective population 
size, etc.
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Pure Mutation

• Suppose a gene mutates from A to a at rate µ per 
generation.  How fast will allele frequency 
change?

• Let p be the frequency of A.

• Develop a recursion:  pt+1 = pt(1-µ)

Pure Mutation (2)

• What happens over time, if pt+1 = pt(1-µ)?

• pt+2 = pt+1(1- µ) = pt(1- µ)(1- µ)

• By induction, pt = p0(1- µ)t

• Eventually, p goes to zero.

Pure Mutation (3)

For a typical mutation rate of 10-8 per nucleotide the “half-life” is 69 million generations

µ = 0.01
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Pure Mutation (4)

• What if mutation is reversible?  Let the reverse 
mutation rate, from a back to A occur at rate ν. 

• pt+1 = pt(1-µ) + qtν

• What happens to the allele frequency now?

• Solve for an equilibrium, where pt+1 = pt

Pure Mutation (5)
• pt+1 = pt+1(1-µ) + qtν df

• Let pt = pt+1 = p*, and qt = 1-p*

• pt+1 = pt(1-µ) + qtν, after substituting, gives

• p* = p*(1-µ) + (1-p*)ν

• p* = p*-p*µ + ν - p*ν

• p*(ν+µ) = ν

• p* = ν/(ν+µ)

Pure Mutation (6)

µ = 0.01, ν = 0.02,  so p* = 2/3
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Pure Drift – Binomial sampling

• Consider a population with N diploid individuals.  The 
total number of gene copies is then 2N.

• Initial allele frequencies for A and a are p and q, and we 
randomly draw WITH REPLACEMENT enough gene 
copies to make the next generation.

• The probability of drawing i copies of allele A is:

iNiqp
i
N

i −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 22

)Pr(

Binomial sampling

• If p = q = ½, then, for 2N = 4 we get:

• i = 0 1 2 3 4
• Pr(i)= 1/16 4/16 6/16 4/16 1/16

• Note that the probability of jumping to p=0 is (1/2)2N, so that a small
population loses variation faster than a large population.

iNiqp
i
N

i −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 22

)Pr(

Pure Drift: Wright-Fisher model

• The Wright-Fisher model is a pure drift model, and 
assumes only recurrent binomial sampling.

• If at present there are i copies of an allele, then the 
probability that the population will have j copies next 
generation is:

jNj

N
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•This specifies a Transition Probability Matrix for a 
Markov chain.

Wright-Fisher model

• For 2N = 2, the transition probability matrix is:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
25.5.25.
001

j
0     1      2

0
i 1

2

Wright-Fisher model 

generation Allele frequency
2N = 32
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Identity by descent

• Two alleles that share a recent common 
ancestor are said to be Identical By Descent

• Let F be the probability that two alleles 
drawn from the population are IBD.

• Ft = 1/2N + (1 – 1/2N)Ft-1 is the pure drift 
recursion.

F = prob(identity by descent) under pure drift
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2N = 100Ft+1 = 1/2N + (1- 1/2N)Ft

Note that heterozygosity, H = 1-F

2N = 100Ht+1 = (1- 1/2N)Ht
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Conclusions about pure drift models

• All variation is lost eventually.
• When all variation is lost, all alleles are IBD.
• Small populations lose variation faster.
• Heterozygosity declines over time, but the 

population remains in Hardy-Weinberg 
equilibrium.

• Large populations may harbor variation for 
thousands of generations.

Mutation and Random Genetic Drift

• The primary parameter for drift is Ne.
• Mutation occurs at rate µ, but we need to 

specify how mutations occur:
• Infinite alleles model: each new mutation 

generates a novel allele.
• Infinite sites model: each new mutation 

generates a change at a previously invariant 
nucleotide site along the gene.

Infinite alleles model

• Suppose each mutation gives rise to a novel allele.  
• Then no mutant allele is IBD with any preceding allele.
• The recursion for F looks like:

2
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Equilibrium F under infinite alleles

• Solve for equilibrium by letting Ft = Ft-1 = F*.  After some 
algebra, we get:

2
1 )1(

2
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1 µ−⎥
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Steady state heterozygosity (H = 1 - F) 
under the infinite alleles model
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H = θ/(1+θ),     where θ = 4Neµ

Infinite alleles model: Expected 
number of alleles (k) given sample 

size n and θ

1
...
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θ
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Note: assumes no recombinationθ = 4Neµ
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Infinite alleles model: 
Expected number of alleles 

θ =5 and θ=10

Mutation-drift and the neutral theory of 
molecular evolution (Motoo Kimura)

Time

Allele
Freq.

0

1

4N µ

Mean time between origination and fixation = 4N generations
Mean interval between fixations = µ generations.

Infinite sites model: each mutation generates a
change at a previously invariant nucleotide site

• Drift occurs as under the Wright-Fisher model.
• Mutations arise at rate µ at new sites each time.
• Does this model give rise to a steady state?
• How many sites do we expect to be segregating?
• What should be the steady state frequency spectrum of 

polymorphic sites?
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Infinite sites model

(infinite-sites model)
j

jS ⎟
⎠
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⎛
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Define Si as the number of segregating sites in a sample of i genes.

So, the probability that a sample of 2 genes has zero segregating sites is:

⎟
⎠
⎞

⎜
⎝
⎛

+
==

1
1)0Pr( 2 θ

S

Note that Pr(S2=0) is the same as the probability of identity, or F.

Infinite sites model: The expected number 
of segregating sites  (S) depends on θ and 

sample size (n)

(infinite-sites model)

∑
−

=

=
1

1

1
)(

n

i i
SE θ

Observed and expected numbers of 
segregating sites

(Lipoprotein lipase, LPL)

observed
expected

Site frequency spectrum

• Under the infinite sites model, the expected number of

singletons is θ
doubletons is θ/2
tripletons is θ/3
…
n-pletons is θ/n

Note that the expected number of singletons is invariant across sample sizes!

Some observed human site frequency spectra Looking forward in time – the Wright-Fisher model
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Modeling the ancestral history of a sample:
The Coalescent

1

2

3
4

5
6

7
8

Common ancestor = 00000000

A       B        C      D   E          F         G

A: 00000100
B: 00011000
C: 00010000
D: 00100000
E: 11000001
F: 11000000
G: 11000010

Relating the neutral coalescent to observed sequence data

Expected time to the next coalescence

• Pr(2 alleles had two distinct parents) = 1 – 1/2N

• Pr (3 alleles had 3 distinct parents) = (1 – 1/2N)(prob 3rd is different)
= (1 – 1/2N)(1 – 2/2N)

• Pr (k alleles had k distinct parents) = 

N

k

N
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Pr(k alleles had k lineages for t generations, then k-1 lineages 
at t+1 generations ago) 

= Pr(k lineages)t × [1-Pr(k lineages had k parents)]
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k
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If time is rescaled in units of 2N generations, this is simply
the exponential distribution, with parameter (k choose 2)-1. 
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Simulation of coalescent trees: 
Branch lengths and topology 

Simulation of gene genealogies: 
n = 142, S = 88

OMIM:  Online Mendelian Inheritance of Man

•Over 9000 traits have been identified and the chromosome location for 
more than six thousand of these genes has been determined

•Victor McKusick from Johns Hopkins University and colleagues 
compiled a catalog of human genetic traits

•Each trait is assigned a catalog number (called the OMIM number).

•94% of traits are autosomal, 5% are X-linked, .4% are Y-linked, and 0.6 
% are mitochondrial

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM

Balance between mutation and selection

• Suppose mutations occur from the normal (A) to the 
mutant (a) form at rate µ.

• Suppose the trait is recessive and has a reduction in fitness 
of s.

• The fitness of genotypes:  AA Aa aa
1         1       1-s

Ignore mutation for a moment….

• If zygotes have frequencies p2 : 2pq : q2, then after 

selection the frequencies are p2 : 2pq : q2(1-s).

• Recall that q = ½ freq (Aa) + freq(aa)

• This means: 

)1(2
)1(' 22

2

sqpqp
sqpqq

−++
−+

=

Now add mutation back in

• Mutations increase the frequency of a according to the 
equation q’ = q+pµ = q + (1-q)µ.

• This yields:

µ)1(
)1(2

)1(' 22

2

q
sqpqp

sqpqq −+
−++

−+
≈
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Balance between mutation and selection

• This looks messy, but at equilibrium, the solution is simple:

s
q µ

≈ˆ

Crude estimation of mutation rate from 
mutation-selection balance

• The incidence of cystic fibrosis is about 1/2000.
• It is autosomal recessive, so if this is in HW, then q2 = 

0.0005, or q = 0.0224.
• Apply the equilibrium equation:

s
q µ

≈ˆ

•Letting s=1, so 0.0224 = µ

We get µ = 0.0005.   This is awfully high….

Linkage disequilibrium and HapMap

•The Problem – how to map to finer  
resolution than pedigrees allow.

•Definition of Linkage Disequilibrium.

•Some theory about linkage disequilibrium.

•Patterns of LD in the human genome

•The HapMap project.

The Limit to Resolution of Pedigree Studies

The typical resolution in mapping by pedigree studies is shown above--
the 20 centiMorgan peak width is about 20 Megabase pairs….

Possible solution

Sampling from a POPULATION (not just families) means
that many rounds of recombination may have occurred in 
ancestral history of a pair of alleles.  Maybe this can be used
for mapping….

Theory of Two Loci

•Consider two loci, A and B, each of which has two alleles
segregating in the population.

•This gives four different HAPLOTYPES: AB, Ab, aB and 
ab.

•Define the frequencies of these haplotypes as follows:

pAB = freq(AB)

pAb = freq(Ab)

paB = freq(aB)

pab = freq(ab)
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Linkage equilibrium

•Suppose the frequencies of alleles A and a are pA and pa.  Let the 
frequencies of B and b be pB and pb.

•Note that pA + pa = 1 and pB + pb = 1.

•If loci A and B are independent of one another, then the chance of 
drawing a gamete with A and with B is pApB.  Likewise for the other 
gametes:

pAB = freq(AB) = pApB

pAb = freq(Ab) = pApb

paB = freq(aB) = papB

pab = freq(ab) = papb

•This condition is known as LINKAGE EQUILIBRIUM

Linkage DISequilibrium

•LINKAGE DISEQUILIBRIUM refers to the state when the 
haplotype frequencies are not in linkage equilibrium.

•One metric for it is D, also called the linkage disequilibrium 
parameter.

D = pAB - pApB

-D = pAb - pApb

-D = paB - papB

D = pab - papb

•The sign of D is arbitrary, but note that the above says that a positive 
D means the AB and ab gametes are more abundant than expected, 
and the Ab and aB gametes are less abundant than expected (under 
independence).

Linkage disequilibrium measures

From the preceding equations for D, note that we can also write:

D = pABpab – pAbpaB

The maximum value D could ever have is if pAB = pab = ½.  When
this is so, D = ¼.  Likewise the minimum is D = - ¼ .

D’ is a scaled LD measure, obtained by dividing D by the maximum 
value it could have for the given allele frequencies.  This means
that D’ is bounded by –1 and 1.

A third measure is the squared correlation coefficient:

bBaA

aBAbabAB

pppp
ppppr

2
2 )( −

=

No recombination: only 3 gametes

A B
Ancestral 

state; pAB=1

No recombination: only 3 gametes

Ancestral 
state; pAB=1

A B

A b
Mutation @ 

SNP B

No recombination: only 3 gametes

A B
Ancestral 

state; pAB=1

Mutation @ 
SNP A

A b

a b

Mutation @ 
SNP B
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No recombination: only 3 gametes

A B
Ancestral 

state; pAB=1

Mutation @ 
SNP A

A b

a b

Mutation @ 
SNP B

The aB gamete is missing!

No recombination: only 3 gametes

• Under infinite-sites model: will only see all 
four gametes if there has been at least one 
recombination event between SNPs

• If only 3 gametes are present, D’=1

• Thus, D’ <1, indicates some amount of 
recombination has occurred between SNPs

r2 measures correlation of alleles
A B

A b

a B

a b

pAB=0.8

pAb=0

paB=0

pab=0.2

r2 measures correlation of alleles
A B

a b

pAB=0.8

pab=0.2

r2=1

Genealogical interpretation of 
D’=1

AB AB AB

A a mutation

aB aBab ab

B b
mutation

No 
recombination

Mutations can 
occur on 
different 
branches

Genealogical interpretation of 
r2=1

AB AB AB

A a mutation

ab abab ab

B b mutation

No 
recombination

Mutations 
occur on 

same branch
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Statistical significance of LD
Notice that the statistics for quantifying LD are simply measures of
the amount of LD.  They say nothing about the probability that
the LD is statistically significantly different from zero.

To test statistical significance, note that the counts of the 4 haplotypes
can be written in a 2 x 2 table:

B       b
A nAB nAb

a naB nab

To test significance, we can apply either a chi-square test, or
a Fisher Exact test. 

Recursion with no mutation or drift
There are four gametes (AB, Ab, aB and ab), and 10 genotypes.

Considering all the ways the 10 genotypes can make gametes,
we can write down the frequency of AB the next generation:

pAB’ = pAB
2 + pABpAb + pABpaB + (1-r)pABpab + rpAbpaB

= pAB – rD

pAb’ = pAb + rD

paB’ = paB + rD

pab’ = pab - rD

How does linkage disequilibrium change?

Note that D’ = pAB’pab’ – pAb’paB’

Substituting we get:

D’ = (pAB – rD)(pab – rD) – (pAb + rD)(paB + rD)

= (pABpab - pAbpaB) – rD(pAB + pab + pAb + paB)

= D – rD

= (1 – r) D

==

Decay of LD over time.
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Equilibrium relation between LD and recombination rate
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Linkage disequilibrium is rare beyond 100 kb or so
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Beyond 500 kb, there is almost zero Linkage disequilibrium …so observing LD means the sites are likely to be close together

Patterns of LD can be examined by testing all pairs of sites

Each square shows the
Test of LD for a pair of sites.

Red indicates P < 0.001 by a
Fisher exact test.

Blue indicates P < 0.05

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

5 10 20 40 80 160 S U
Di st a nc e  ( k b)

Utah Swed AllYor YorBot YorTop

Reich et al. 2001  Nature  411:199-204. 

Different human populations different levels of LD 

www.hapmap.org

• NIH funded initiative to genotype 1-3 millions 
of SNPs in 4 populations:
– 30 CEPH trios from Utah (European ancestry)
– 30 Yoruba trios from Nigeria (African ancestry)
– 45 unrelated individuals from Beijing (Chinese)
– 45 unrelated individual from Tokyo (Japanese)

LD across the genome
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LD blocks can 
be broken by 
recombination 

hotspots

Using the HapMap website

Using the HapMap website Using the HapMap website

Using the HapMap website


