PRINCIPLES OF The scope of Population Genetics

POPULATION
GENETICS Why are the patterns of variation as they are?
FOURTH EOITION (mathematical theory)

What are the forces that influence levels of
variation?
What is the genetic basis for evolutionary
change?
What data can be collected to test hypotheses
about the factors that impact allele
frequency?
What is the relation between genotypic

it okl variation and phenotype variation?

Due to appear January 2007 !

Forces acting on allele frequencies in

populations Genotype and Allele frequencies

Genotype frequency: proportion of each genotype in the
Mutation population

Random genetic drift
Genotype Frequency

Recombination/gene conversion B/B 114/200 = 057
Migration/Demography B/b 56/200 = 0.28

b/b 30/200 = 0.15

Natural selection
Total 1.00

Genotype Number
B/B 114

B/b 56

b/b 30
Total 200

Frequency of an allele in the population is equivalent to the
probability of sampling that allele in the population.

Let p = freq (B) and q = freq (b)

p+g=1 p = freq (B) = freq (BB) + % freq (Bb) = 0.57+0.28/2 =0.71
q = freq (b) = freq (bb) + % freq (Bb) = 0.15 + 0.28/2 = 0.29

p = freq (B) = freq (BB) + % freq (Bb)

q = freq (b) = freq (bb) + % freq (Bb) Gene Counting
p = count of B alleles/total = (114 x 2 + 56)/400 = 0.71

g = count of b alleles/total = (30 x 2 + 56)/400 = 0.29




Hardy-Weinberg Principle

For two alleles of an autosomal gene, B and b, the
genotype frequencies after one generation

freq(B) = p freq(b) = q

freq (B/B) = p?
freq (B/b) = 2pqg
freq (b/b) = g?

Gene frequencies of offspring can be predicted from
allele frequencies in parental generation

Graphical proof of Hardy Weinberg Principle

Sperm

Freq of alleles in
offspring

freq (B) =
p? + %2 (2pq)
=p (p+0)
=p@=p

freq (b) =
2 + % (2pq)
=q(+q)
=g =q

Hardy-Weinberg tests for Quality Control
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Heterozygotes are being under-called (Boerwinkle et al.)

Assumptions of Hardy Weinberg

*Approximately random mating

*An infinitely large population

*No mutation

*No migration into or out of the population

*No selection, with all genotypes equally viable and
equally fertile

SNPs in the ApoAl/CIII/AIV/IAV region of chromosome 11

I

Example from MN blood typing

MM M/N N/N
Num. Individuals 1787 3037 1305
Number M alleles 3574 3037 0
Number N alleles 0 3037 2610
Number M+N 3574 6074 2610
Allele freq of M = 6611/12,258 = 0.53932 = p
Allele freq of N = 5647/12,258 = 0.46068 = q
Expected freq  p?=0.29087 2pg=0.49691 q?=0.21222 1.00
Expected # 1782.7 3045.6 1300.7 6129
(freq x 6129)
%2 = X (observed number — expected number)?
expected number
%2 = (1787 - 1782.7)> + (3037 —3045.6)> + (1305 —1300.7)* = 0.04887
1782.7 3045.6 1300.7
Df = number of classes of data (3) — number of parameters estimated (1) -1 = 1 df
Probability of a chi-square this big or bigger = .90




Hardy-Weinberg tests on steroids — the Affy 500k chip

AJN BRLMM Algorithm 435,632 SNPs
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Increasing Significance of H-W deviation

—

Chi Square test p-value

HW deviation = observed — expected heterozygosity

Mutation

» What is the pattern of nucleotide changes?

* |s the pattern of mutations homogeneous
across the genome?

« Are sites within a gene undergoing
recurrent mutation?

Mutation and Random Genetic Drift

* The primary parameter for drift is N,.

» Mutation adds variation to the population,
and drift eliminates it.

» These two processes come to a steady state
in which the standing level of variation is
essentially constant.

Extensions of the Hardy-Weinberg
Principle

More than two alleles
More than one locus
X-chromosome
Subdivided population

CARDIA STUDY
Locations of Chromosome 11 SNPs Genotyped in the AV/AIV/CIII/Al Gene Cluster

(colored sites in both studies)
ApoAV

APOAIV.

s

46126
ApoAl

o KT ST
Average Distance between SNPs (Fullerton 124) _Average Distance between SNPs (CARDIA 80)

AV | AV | cm Al ALL AV | AV | cm Al | AL
Mean | 163.18 | 12439 | 10120 | 15337 | 13005 Mean | 239.33 | 14306 | 16224 | 25561 | 195.03

w00 —

* | std | 18383 | 11408 | 8877 | 16632 | 13683 Std | 28532 | 12314 | 140.30 | 21034 | 193.00

Observed and expected numbers of
segregating sites
(Lipoprotein lipase, LPL)
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Migration and Population
Structure

Does the Hardy-Weinberg principle
hold for a population that is subdivided
geographically?

What is the relation between SNP
frequency, age of the mutation, and
population structure?

Given data on genetic variation, how
can we quantify the degree of
population structure?

Nucleotide site frequency spectrum

Relative allele frequency

Nucleotide site rank

Population heterogeneity in Jackson North Karelia
haplotype frequencies (ApoE)
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Angiotensin Converting Enzyme (ACE) Quantifying population structure

Variable sites (78) . .
e st Suppose there are two subpopulations, with

g allele frequencies (p,,q,) and (p,,q,) and
. average allele frequencies (P and Q).

g E s H; = 2PQ = heterozygosity in one large
panmictic population
Hg = (2p,0,+2p,0,)/2 is average
heterozygosity across populations
Fer = (H-Hg)/Hy

Rieder et al. (1999)

Note — unequal sample sizes require more calculation



Average Fg4; for human SNPs is 0.08 Population differentiation (Fsy)

Varies among SNPs and genes
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Pritchard et al. method for inferring Rosenberg NA, Pritchard JK, Weber JL, Cann HM,

population substructure Kidd KK, Zhivotovsky LA, Feldman MW. 2002
Genetic structure of human populations.

Specific number of subdivisions. Science. 298:2381-2385.
Randomly assign individuals.
Assess fit to HW.

Pick an individual and consider a swap. S T T

If fit improves, accept swap, otherwise 5 G E ) T

et LT g 0001000
[T T T T T TTTT T o

e

accept with a certain probability. Illlllllillllil__ 128
) ERRUIRLIUE] [REREL] R R VTR R
Markov chain Monte Carlo — gets best n: -

fitting assignment.

The human mitochondrial genome — 16,659 bp
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www.mitomap.org



Fine-structure mapping of mitochondrial defects
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Genome-wide SNP discovery

ACATGCTGACTGACATGCTAGCTGA
ATGCTGACTGACATTCTA
ATGCTGACTGACATTCTAG

TGCTGACTGACATGCTAGC
TGCTGACTGACATGCTAGCT
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Distribution of SNP Density Across the Genome

=)
=4
S

)
c
@
>
g
C

MMM

150 200 20

Number of SNPs / 100 kb

W
VN b

Major human migrations inferred from mtDNA sequences

Ssaha SNP

« Sequence Search and Alignment by Hashing
Algorithm.

« Align reads; apply ad hoc filters to call SNPs

* http://www.sanger.ac.uk/Software/analysis/S
SAHA/

Observed SNP Distribution is not Poisson

e

Pr(x.SNPs) = ;
X!

- =0

Number of SNPs / 100 kb



Why the Poisson distribution fits badly

Time to common ancestry for a random pair of
alleles is distributed exponentially.

So the Poisson parameter varies from one region
to another.

Because the time to common ancestry varies
widely, the expected number of segregating
mutations varies widely as well.

But variation in ancestry time is not sufficient to

explain the magnitude of variation in SNP density.

Nucleotide diversity ( x 104) by chromosome

7.29 13 7.75
7.39 14 7.32
7.46 15 7.84
7.84 16 8.85
7.42 17 7.92
7.83 18 7.76
8.03 19 9.04
8.06 20 7.69
8.14 21 8.54
8.26 22 8.19
7.89 X 4.89
7.55 Y 2.82
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Mutation-drift balance: the null model

*Model with pure mutation

*The Wright-Fisher model of drift
Infinite alleles model

-Infinite sites model

- The neutral coalescent

Similar inference from Celera-only as from Celera vs. public SNPs

I. i "III:;'l|\'J'

R

[ | | .i! Celera SNPs
i l ".[ 1 Celera - PFP
M

0 50 .

Number of SNPs / 100 kb

Mixture models allowing heterogeneity in mutation
and recombination can fit the data well

Sainudiin et al, submitted

Motivation

* Are genome-wide data on human SNPs
compatible with any particular MODEL?

+ Perhaps more useful -- are there models
that can be REJECTED ?

*+ Models tell us not only about what genetic
attributes we need to consider, they also
can provide quantitative estimates for
rates of mutation, effective population
size, etc.




Pure Mutation

« Suppose a gene mutates from A to a at rate p per
generation. How fast will allele frequency
change?

¢ Let p be the frequency of A.

« Develop arecursion: p,; = p(1-p)

Pure Mutation (3)
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For a typical mutation rate of 10 per nucleotide the “half-life” is 69 million generations

Pure Mutation (5)
Pt = Pua(1-) + gy df
Let p, = pyq = P*, and g, = 1-p*
Pt = Pe(1-p) + q,v, after substituting, gives
p* = p*(1-p) + (1-p*)v
p* = p*-p*u+v-p*v
pH(vH) = v

p* = vi(v+u)

Pure Mutation (2)

What happens over time, if p,,; = py(1-p)?
Prz = Pra(1- 1) = p(1- W(2- )
By induction, p, = py(1- )t

Eventually, p goes to zero.

Pure Mutation (4)

What if mutation is reversible? Let the reverse
mutation rate, from a back to A occur at rate v.

Pres = P(1-1) + Qv
What happens to the allele frequency now?

Solve for an equilibrium, where p,,; = p;

Pure Mutation (6)

Allele freq.

T T T T T
100 200 300 400 500
Generation

=001, v =002 sop*=2/3




Binomial sampling
Pure Drift — Binomial sampling

total number of gene copies is then 2N.

« Initial allele frequencies for A and a are p and ¢, and we
randomly draw WITH REPLACEMENT enough gene
copies to make the next generation.

+ The probability of drawing i copies of allele A is: Ifp =g =7, then, for 2N = 4 we get:

« Consider a population with N diploid individuals. The Pr(l) — 2 N piqZN—i

2 N i= 4] 1 2 3 4
=\ i 2N—i Pr(i)= 116  4/16  6/16  4/16  1/16
Pr)=| . |p'q

Note that the probability of jumping to p=0 is (1/2)?V, so that a small
population loses variation faster than a large population.

The Wright-Fisher population model . . .
Pure Drift: Wright-Fisher model

N, N, N, N
O<+0—0—0
QO *0—0 ~0
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The Wright-Fisher model is a pure drift model, and
assumes only recurrent binomial sampling.

If at present there are i copies of an allele, then the
probability that the population will have j copies next
generation is:
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Diploid Individuals reproduce by sexual reproduction with pessibility of selfing
Maring 1s random with respect to location and genotype
Generations are non-overlapping (everyone reproduces simultanecusly)

The population size is constant of size N (2N alleles)

*This specifies a Transition Probability Matrix for a
Markov chain.

There is no migration or selection

Wright-Fisher model
Wright-Fisher model

« For 2N = 2, the transition probability matrix is:




F = prob(identity by descent) under pure drift
Identity by descent

» Two alleles that share a recent common
ancestor are said to be Identical By Descent

* Let F be the probability that two alleles
drawn from the population are 1BD.

* F,=1/2N + (1 - 1/2N)F, is the pure drift
recursion. e

Gen

Fut = 12N + (1- 12N)F,

Note that heterozygosity, H = 1-F
Conclusions about pure drift models

All variation is lost eventually.

When all variation is lost, all alleles are IBD.

Small populations lose variation faster.

Heterozygosity declines over time, but the

population remains in Hardy-Weinberg

equilibrium.

T de e Large populations may harbor variation for
Gen thousands of generations.
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He = (1- 12N)H,

Mutation and Random Genetic Drift Infinite alleles model

The primary parameter for drift is Ne' + Suppose each mutation gives rise to a novel allele.

Mutation occurs at rate i, but we need to « Then no m_utant allele is IB_D \.Nith any preceding allele.
specify how mutations occur: ¢ The recursion for F looks like:

Infinite alleles model: each new mutation '

generates a novel allele. 1 1 )
Infinite sites model: each new mutation Fo= N ! 2N Fou [@=20)
generates a change at a previously invariant )

nucleotide site along the gene.




Equilibrium F under infinite alleles

F :H\ﬁ(l_;\ljﬁ 1}(1—/1)2

« Solve for equilibrium by letting F, = F; = F*. After some
algebra, we get:

*_ 1
ANu+1

Infinite alleles model: Expected
number of alleles (k) given sample
size nand 0

0

E(k):1+i+i+...+7
f+1 6+2 f+n-1

0 = 4N, Note: assumes no recombination

Mutation-drift and the neutral theory of
molecular evolution (Motoo Kimura)

4N i
1

Allele
Freq.

Time

Mean time between origination and fixation = 4N generations
Mean interval between fixations = p generations.

Steady state heterozygosity (H=1-F)
under the infinite alleles model

T
5

theta = 4Nu

H =06/(1+6), where 6 = 4N_u

Infinite alleles model:
Expected number of alleles

Number of alleles

T T T T T
100 200 300 400 500
Sample size

and 6=10

Infinite sites model: each mutation generates a
change at a previously invariant nucleotide site

Drift occurs as under the Wright-Fisher model.
Mutations arise at rate p at new sites each time.

Does this model give rise to a steady state?

How many sites do we expect to be segregating?
What should be the steady state frequency spectrum of
polymorphic sites?

11



Infinite sites model

Define S; as the number of segregating sites in a sample of i genes.

. 1 0
St ) e

So, the probability that a sample of 2 genes has zero segregating sites is:

Pr(S, =0) = 911

Note that Pr(S,=0) is the same as the probability of identity, or F.

Observed and expected numbers of
segregating sites
(Lipoprotein lipase, LPL)
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Some observed human site frequency spectra

Infinite sites model: The expected number
of segregating sites (S) depends on 6 and
sample size (n)

E(S) =0

Site frequency spectrum

Under the infinite sites model, the expected number of
singletons is 6
doubletons is 6/2

tripletons is 6/3

n-pletons is 6/n

Note that the expected number of singletons is invariant across sample sizes!

Looking forward in time — the Wright-Fisher model

genaration
t 1 2 L

2N = 10 copies of gene in population. (N is the number of
diploid individuals.)

12



Modeling the ancestral history of a sample:
The Coalescent

generation

~8—8— 8" —

e

First coalescence in generation t,, next in t;, next in t,. Total
coalescence time for sample is 11 generations. The copy of
the gene in t,, is the most recent common ancestor (MRCA).

The coalescent: samples in populations

Most recent common ancestor (MRCA) coalescence
v

\L _:
>

Ancestral lineages

Present day

— fime

Relating the neutral coalescent to observed sequence data

Common ancestor = 00000000

A: 00000100
B: 00011000
C: 00010000
D: 00100000
E: 11000001
F: 11000000
7 G: 11000010

The genealogical process for two chromosomes

7 o Probability from same parent L
. (coalescence) IN
e (
o—C Probability from different parents = L
2N
a—0
1Y% 1
Probability of coalescence f generations ago =[1-—| —
2N/} 2N

el »
Not coalesced for o
first t-1 generations ~ Coalesce in next
generation

E[Tresl=2N

63% of outcomes
have Typeq < 2N

Expected time to the next coalescence

Pr(2 alleles had two distinct pa ) =1-1/2N

Pr (3 alleles had 3 distinct parents) = (1 — 1/2N)(prob 3 is different)
= (1-1/2N)(1 - 2/2N)

Pr (k alleles had k distinct parents) =

Pr(k alleles had k lineages for t generations, then k-1 lineages
at t+1 generations ago)

= Pr(k lineages)! x [1-Pr(k lineages had k parents)]

B G Gy

T2N|T 2N | 2N

If time is rescaled in units of 2N generations, this is simply
the exponential distribution, with parameter (k choose 2)-1.

13



Simulation of coalescent trees:
Branch lengths and topology

Two independent Processes
Continuous: Exponential Waiting Times
Discrete: Choosing Pairs to Coalesce.,

11,2345 Waiting  Coalescing

(1,2)—(3.(4.50)
11.2113.4.5) = ‘
0 [} 2 F:

KsAS)
{1.23{3}4.5)

[HEEHISH

OMIM: Online Mendelian Inheritance of Man

*Over 9000 traits have been identified and the chromosome location for
more than six thousand of these genes has been determined

*Victor McKusick from Johns Hopkins University and colleagues
compiled a catalog of human genetic traits

Each trait is assigned a catalog number (called the OMIM number).

*94% of traits are autosomal, 5% are X-linked, .4% are Y-linked, and 0.6
% are mitochondrial

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM

Ignore mutation for a moment....

« If zygotes have frequencies p? : 2pq : g then after
selection the frequencies are p? : 2pq : g%(1-s).

» Recall that q = %2 freq (Aa) + freq(aa)

¢ This means: pq +q2 (1_ S)

pP+2pg+qi(l-

Simulation of gene genealogies:
n=142,S=88

Balance between mutation and selection

Suppose mutations occur from the normal (A) to the
mutant (a) form at rate p.

Suppose the trait is recessive and has a reduction in fitness
of s.

The fitness of genotypes: AA Aa  aa
1 1 1s

Now add mutation back in

» Mutations increase the frequency of a according to the
equation g’ = g+pu = q + (1-q)p.
¢ This yields:

o PO+a°(1-3)
p>+2pg+q°(L-s)

+(1-q)u

14



Crude estimation of mutation rate from

Balance between mutation and selection . )
mutation-selection balance

¢ This looks messy, but at equilibrium, the solution is simple: The incidence of cystic fibrosis is about 1/2000.

It is autosomal recessive, so if this is in HW, then g2 =
0.0005, or g = 0.0224.

Apply the equilibrium equation:
M

S
eLetting s=1, s0 0.0224 = U

We get u=0.0005. This is awfully high....

The Limit to Resolution of Pedigree Studies
Linkage disequilibrium and HapMap

*The Problem - how to map to finer
resolution than pedigrees allow.

-Definition of Linkage Disequilibrium.
*Some theory about linkage disequilibrium.
Patterns of LD in the human genome

*The HapMap project.

The typical resolution in mapping by pedigree studies is shown above--
the 20 centiMorgan peak width is about 20 Megabase pairs....

Possible solution

Theory of Two Loci

«Consider two loci, A and B, each of which has two alleles
segregating in the population.

*This gives four different HAPLOTYPES: AB, Ab, aB and
ab.
*Define the frequencies of these haplotypes as follows:
Pag = freq(AB)

Sampling from a POPULATION (not just families) means P, = freq(Ab)
that many rounds of recc_)mbmatlon may have qccurred in P.s = freq(aB)
ancestral history of a pair of alleles. Maybe this can be used

for mapping.... Pay = freq(ab)




Linkage equilibrium
*Suppose the frequencies of alleles A and a are p, and p,. Let the
frequencies of B and b be pg and p,,.
*Note that p, + p,=1and pg +p, = 1.

«If loci A and B are independent of one another, then the chance of
drawing a gamete with A and with B is p,pg. Likewise for the other
gametes:

Pag = freq(AB) = papg
Pap = fred(Ab) = p,p,
Pag = freq(aB) = p,pg
Py = freq(ab) = pp,
*This condition is known as LINKAGE EQUILIBRIUM

Linkage disequilibrium measures

From the preceding equations for D, note that we can also write:

D = PagPab — PabPas

The maximum value D could ever have is if ppg = p,p, = %. When
this is so, D = %. Likewise the minimumis D =-%.

D’ is a scaled LD measure, obtained by dividing D by the maximum
value it could have for the given allele frequencies. This means
that D’ is bounded by -1 and 1.

A third measure is the squared correlation coefficient:

2 _ (Pas Pap = Pao Pas)’
PaPaPs Py

r

No recombination: only 3 gametes

B
Ancestral
state; ppg=1
Mutation @
SNP B b

Linkage DISequilibrium
*LINKAGE DISEQUILIBRIUM refers to the state when the
haplotype frequencies are not in linkage equilibrium.

*One metric for it is D, also called the linkage disequilibrium
parameter.

D = pag - PaPs
-D = Pay - PaPy
-D = pag - PaPs
D = pgp - PPy

*The sign of D is arbitrary, but note that the above says that a positive
D means the AB and ab gametes are more abundant than expected,
and the Ab and aB gametes are less abundant than expected (under
independence).

No recombination: only 3 gametes

A

Ancestral
state; ppg=1

No recombination: only 3 gametes

Ancestral
state; ppg=1

Mutation @
SNP B

Mutation @
SNP A

16



No recombination: only 3 gametes

A B
Ancestral
state; pag=1

Mutation @
SNP B b

Mutation @
SNP A b

A

The aB gamete is missing!

r2 measures correlation of alleles
B

| Pag=0.8

]
B

Genealogical interpretation of
D=1

\[¢}

No recombination: only 3 gametes

 Under infinite-sites model: will only see all
four gametes if there has been at least one
recombination event between SNPs

« If only 3 gametes are present, D’=1

e Thus, D’ <1, indicates some amount of
recombination has occurred between SNPs

r2 measures correlation of alleles
A B

| Pas=0.8

Genealogical interpretation of
r’=1

No

recombination ‘ recombination

Mutations can Mutations
occur on occur on
different same branch
branches




Statistical significance of LD

Notice that the statistics for quantifying LD are simply measures of
the amount of LD. They say nothing about the probability that
the LD is statistically significantly different from zero.

To test statistical significance, note that the counts of the 4 haplotypes
can be written in a 2 x 2 table:

B b
Alng ny
a naB nab

To test significance, we can apply either a chi-square test, or
a Fisher Exact test.

How does linkage disequilibrium change?
Note that D” = pag’Pap’ — Pap'Pas’
Substituting we get:
D’ = (pag = rD)(Pap = D) = (Pap + rD)(psg + D)

= (PagPab - PacPag) = ID(Pag + Pab * Pap + Pag)
=D-rD

=(1-rD

Equilibrium relation between LD and recombination rate

Recombination, 4Nc

Recursion with no mutation or drift

There are four gametes (AB, Ab, aB and ab), and 10 genotypes.

Considering all the ways the 10 genotypes can make gametes,
we can write down the frequency of AB the next generation:

Pag’ = Pag” * PagPab * PagPag + (1-1)PagPay + MPavPas
=pas— 1D

Pab’ = Pap + 1D

Pag’ = Pas + 1D

pab’ = Pab - rD

Decay of LD over time.

Linkage disequilibrium, D

10
Generation

Top to bottom: r =.05, 0.1, 0.2, 0.3, 0.5

Linkage disequilibrium is rare beyond 100 kb or so

r—soquared

Y

Physical distance (kb)

18



Beyond 500 kb, there is almost zero Linkage disequilibrium

1000 500
Distance (kb)

2]
eI st

Each square shows the
Test of LD for a pair of sites.

Red indicates P < 0.001 by a
Fisher exact test.

Blue indicates P < 0.05

International

HapMap._,é} -

Project

www.hapmap.org

* NIH funded initiative to genotype 1-3 millions
of SNPs in 4 populations:
— 30 CEPH trios from Utah (European ancestry)
— 30 Yoruba trios from Nigeria (African ancestry)
— 45 unrelated individuals from Beijing (Chinese)
— 45 unrelated individual from Tokyo (Japanese)

...s0 observing LD means the sites are likely to be close together

T T

T
10 1% 20

Distance (Mb)

Different human populations different levels of LD

09
0.8 1
0.7
0.6
2054
1044

0.1

5 10 20 40 80 160 S U

Distance (k5)

—4-Utah -#-Swed —— AllYor —— YorBot — YorTop

Reich et al. 2001 Nature 411:199-204.

LD across the genome
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LD blocks can

be broken by

recombination
hotspots

Using the HapMap website

Using the HapMap websit

Using the HapMap website

International HapMap Project

Showing 49.34 kbp from chr2, positions 136,379,146 to 136,428,481

o ins
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