
SIMULATING YARN-BASED CLOTH

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Jonathan M. Kaldor

May 2011

c© 2011 Jonathan M. Kaldor

ALL RIGHTS RESERVED

SIMULATING YARN-BASED CLOTH

Jonathan M. Kaldor, Ph.D.

Cornell University 2011

Cloth is an important material to model and simulate correctly, both in com-

puter graphics and other industrial applications. The commonly used mod-

els for cloth in computer graphics typically approximate the cloth as an elastic

sheet with linear isotropic behavior inspired by the construction of woven fab-

rics. However, they do a poor job of predicting the behavior of knits, which

are driven by the complex interactions of yarn loops pulled through each other.

This thesis presents a yarn-based model for cloth where yarns in the fabric are

explicitly modeled as inextensible but flexible spline curves. Yarn dynamics

are dictated by both energy terms and hard constraints, while friction interac-

tions, a critical component of correct yarn behavior, are approximated using a

velocity filter that penalizes locally non-rigid motion. Qualitative comparison of

the model to observed deformations of hand-knitted samples in the laboratory

showed that the model predicts key mechanical properties of different knits.

Since this model is slower than sheet-based approaches, further work looked at

accelerating the model through both localized rigidification and adaptive con-

tact linearization. In localized rigidification, regions of the cloth behaving al-

most rigidly are simulated using a cheaper model which avoids many of the

expensive force computations. For adaptive contact linearization, yarn contacts

are grouped into contact sets, with the associated contact force computed ex-

actly at one timestep, and then approximated on subsequent steps via lineariza-

tion in a rotated reference frame for nearby geometric configurations. Finally,

additional work looked at the problem of creating initial yarn geometry for sub-

sequent simulation as a yarn-based model.

BIOGRAPHICAL SKETCH

Jonathan Kaldor was born November 14th, 1980 and graduated from Miami

Killian Senior High School in 1999 and Amherst College in 2003 with a Bachelor

of Arts, double majoring in Mathematics and Computer Science. He started at

Cornell University in 2004.

iii

To my grandfather, Gilbert Tougas

iv

ACKNOWLEDGMENTS

I would like to thank my family and friends, particularly my parents Kay and

Michael, for all of the support and encouragement they have given me through

the years. At Cornell, Robert Kleinberg and Charles Van Loan both served on

my committee and gave me help and suggestions on various problems as they

arose. My advisors Steve Marschner and Doug James were both an invaluable

help, constantly providing not only advice, guidance, ideas, and suggestions,

but also reading through drafts of this work and judging the appearance of

an almost-literally uncountable number of videos of falling blue scarves. This

research was supported in part by funding from the following: the National

Science Foundation (CCF-0702490), the NSF CAREER program (CCF-0347303,

CCF-0652597), two Alfred P. Sloan Research Fellowships, and additional sup-

port from Intel, The Boeing Company, Pixar, Autodesk, NVIDIA, and Unilever.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgments . v
Table of Contents . vi
List of Tables . viii
List of Figures . ix

1 Introduction 1

2 Cloth at a Glance 5
2.1 Cloth Structure . 5

2.1.1 Knit Geometry . 7
2.1.2 Constructing Knits . 9

2.2 Cloth Dynamics . 10

3 Prior Work 12
3.1 Models . 12

3.1.1 Elastic Sheets . 12
3.1.2 Rods . 14
3.1.3 Yarn-Based Cloth . 15
3.1.4 Corotational . 18
3.1.5 Model Reduction . 19

3.2 Contact and Collision . 20
3.2.1 Deformable Meshes . 20
3.2.2 Generalized Contact . 22

4 Yarn Model 23
4.1 Overview . 23
4.2 Rod Model . 23

4.2.1 Internal Forces . 24
4.2.2 Self-Contact Forces . 26
4.2.3 Dissipative Forces . 27
4.2.4 External Forces . 30

4.3 ODE Integration . 31
4.3.1 Integration Method . 31
4.3.2 Yarn Collisions . 32
4.3.3 Velocity Filters . 33

4.4 Validation . 34
4.5 Further Model Improvements . 42

4.5.1 Discrete Rods . 43
4.5.2 Improved Internal Friction Model 49
4.5.3 Reordered Integration . 51

vi

4.5.4 Revised Results . 52
4.6 Conclusions . 52

5 Rigidification 55
5.1 Rigidification Model . 57

5.1.1 Rigid Zone Dynamics . 58
5.1.2 Defining Rigid Zones . 60

5.2 Modifications to Integrator . 62
5.2.1 Force Computation . 63
5.2.2 Non-Rigid Damping . 67
5.2.3 Constraints . 68

5.3 Rigidification Oracles . 72
5.3.1 Rigidification . 73
5.3.2 Basic Derigidifier . 76
5.3.3 Impulse Derigidifier . 77

5.4 Results . 82
5.5 Lessons Learned . 84

6 Adaptive Contact Linearization 89
6.1 Contact Sets . 90
6.2 Linearized Contact Approximation 93

6.2.1 Corotational Model . 94
6.2.2 Model Invalidation . 95
6.2.3 Approximation Errors . 96

6.3 Contact Adaptation . 97
6.3.1 Representation . 98
6.3.2 Detection . 99
6.3.3 Evaluation and Evolution 104

6.4 Results . 107
6.5 Conclusion . 112

7 Constructing Yarn Geometry 115
7.1 An Automatic Knit Yarn Generator 116
7.2 Future Directions . 120

7.2.1 Finding Loop Positions . 122

8 Conclusion 129

vii

LIST OF TABLES

4.1 Parameters used during relaxation and simulation. 34
4.2 Scene statistics. 36
4.3 Parameters used for revised simulator. 52

5.1 Parameters used during rigid simulation. 82

6.1 Parameters used during ACL simulation. 106
6.2 Model and scene statistics and timings (All numbers and timings

are an average number over 2s of simulation) 107

viii

LIST OF FIGURES

2.1 Interlocking loop structures of three knitting patterns and woven
fabric. 7

2.2 Views of three knitted samples. 8
2.3 Stitch diagram, geometry, and real sample of a cable stitch 9

3.1 Rectilinear and triangular mesh cloth models. 13

4.1 Summary of yarn-level model . 25
4.2 Regions used for the non-rigid damping velocity filter 29
4.3 Overview of initial time-stepping scheme 32
4.4 Validation comparison . 35
4.5 Stretch-test comparisons for garter knits. 38
4.6 Stretch-test comparisons for stockinette knits. 39
4.7 Stretch-test comparisons for rib knits. 40
4.8 Falling scarf . 41
4.9 Leg warmer . 42
4.10 A longer scarf on an inclined plane 43
4.11 Partially unravelled yarn showing non-straight rest configuration 44
4.12 Overview of revised algorithm . 50
4.13 Six frames from the falling scarf after model improvements of

Section 4.5 . 53

5.1 Hierarchy of zones in a simple knit 61
5.2 Overview of rigid-cloth simulator 62
5.3 Example of intervals between rigidified zones 65
5.4 Failure case for rigid predictor . 78
5.5 Falling scarf without impulse derigidification 79
5.6 Falling scarf with impulse derigidification 81
5.7 Scarf falling on a plane and then being picked up again 86
5.8 Performance scaling for blanket at various levels in the rigid hi-

erarchy . 87
5.9 Frames from falling blanket and sack examples 88

6.1 Contact structure in single frame of falling scarf 91
6.2 Examples of contact sets . 92
6.3 Force response curve and linearization in one dimension, with a

valid region that includes force reversal 97
6.4 Algorithm Overview . 98
6.5 Histogram of segment size, normalized to grid size 101
6.6 Contact Resizing . 104
6.7 Contact Merging . 105
6.8 A scarf falling on a flat plane for a variety of tolerances. 108

ix

6.9 Sack, with model updates visualized in red. Pure red is ≥ 13
updates over the 1/30s frame (540 timesteps) 109

6.10 Performance comparison of adaptive contact linearization 111
6.11 Blanket falling on sphere . 112
6.12 Four frames from the sweater animation 113

7.1 Unrelaxed and relaxed geometry for each of the three basic knit
types (yarn radius shrunk for clarity). 117

7.2 Stitch models for basic grid / cylindrical construction. 118
7.3 Additional stitch models for generating the sweater model. . . . 119
7.4 A simple knit structure and associated loop relationships 121
7.5 Comparison of 2D embeddings of 10 × 10 grid for both spectral

embedding and Local Linear Embedding 125
7.6 Comparison of 3D embeddings of 10 × 10 grid for both spectral

embedding and Local Linear Embedding, with varying bound-
ary conditions . 125

7.7 Comparison of 3D embeddings of 20 × 10 grid and 30 × 10 grid
for both spectral embedding and locally linear embedding 126

7.8 Comparison of 3D embeddings of a cable knit pattern 127

x

CHAPTER 1

INTRODUCTION

Computer simulation of various materials has become an integral part of the

workflow in many industries, able to capture and reproduce characteristic be-

haviors and motions in cases where doing so in real life would be unnecessarily

costly, time-consuming, or even impossible. Thus, simulation of prototypes al-

lows designers to evaluate feasibility and make alterations virtually before ever

physically creating the part, while film directors can add massive and realistic-

looking special effects to movies which would otherwise be entirely impractical

from both a physical and monetary point of view. Crucially, effective simula-

tion depends on both the performance of modern hardware and the abstractions

and approximations made by the simulation, and as the former has improved

in speed so have the latter in accuracy and realism.

Among materials to simulate one of the most important is cloth, both for its

versatility and ubiquity. Engineering applications have long focused on accu-

rate cloth simulation for its importance in bulletproof armor [45, 122, 123, 85],

composite materials [28, 12], and medical applications [121]. Similarly, com-

puter graphics have emphasized cloth simulation due to the need to accurately

reproduce clothing for human (and other) characters. However, most research

on cloth mechanics has focused on woven cloth, both for its simplicity and be-

cause many fabrics used in engineering applications are woven. In clothing,

though, knit fabrics are as commonly used as wovens, and many very common

garments, such as T-shirts or leggings, owe their existence to knits and cannot

be made from woven material.

The distinction between knits and wovens is important for simulation be-

cause their mechanical structures are entirely dissimilar, and as a result they

1

behave differently at all scales. The yarns in woven fabric are nearly immobile,

leading to an almost inextensible sheet with limited deformations in the yarn

structure. In contrast, the interlocked loops in a knit material deform and slide

readily, leading to a highly extensible sheet with dramatic changes in small-scale

structure as the material stretches. This stretchiness is exploited as a key feature

in garments, allowing for clothing to stretch and conform to the body in certain

places like collars and sleeves.

Due to limited computational resources, cloth simulation in computer

graphics thus far generally uses models that approximate the mechanics of lin-

ear elastic sheets. Because of the small in-plane deformations of woven materi-

als, acceptable realism can often be achieved for woven fabric using these mod-

els. But linear-elastic sheet models inevitably look “rubbery” if they are allowed

to stretch as much as a typical knit fabric does. This is unsurprising, since the

mechanics of interlocking loops in a knit fabric bears little resemblance to the

mechanics of a continuous elastic material—a fundamentally different kind of

model is required. The small-scale behavior of knits is also important because

many knits are made with large yarns, meaning that the yarn structure is clearly

visible and must behave correctly for realistic results.

As available computational power has increased, though, the need to ab-

stract away the internal yarn structure has diminished. This thesis meets the

challenge of knits head-on, by directly solving for the motion of the yarn that

makes up the fabric and the interactions between loops that determine its be-

havior. The physical model is concisely described by the behavior of a yarn: an

inextensible curve with resistance to bending, a collision force that resists inter-

penetration, and damping for stability and to stand in for the effects of friction.

From this model, though, significant yarn structures can be simulated, produc-

2

ing rich, complex deformations that are impossible to achieve using any kind

of sheet-based simulation. Moreover, many of the properties of knit structures

emerge naturally from the simulation as a result of the intra- and inter-yarn in-

teractions, including the characteristic shapes and textures produced by differ-

ent knitting patterns and the varying extensibility of the knit sheets. In addition,

evaluation of repetitive yarn-level computations can naturally exploit multicore

architectures, allowing for large knits to be simulated in practice.

A simulation at this level of detail is required for realistic results with coarse-

knit garments like sweaters, scarves, or socks, because of their visible yarn struc-

ture. Furthermore, yarn-level simulation is a fundamental tool for studying the

large-scale properties of finely knit fabric, in order to develop continuum mod-

els that can realistically describe knits under large deformations. The same ap-

proach can also lead to models for wovens that are able to capture the material-

dependent subtleties missed by current models.

Despite the increases in computational power, though, yarn-based models

are still significantly more costly than their sheet-based counterparts, and scal-

ing up to large pieces of clothing presents problems. While sheet models can

readily be coarsened for faster simulation, yarn models always need enough

detail to describe the shape of the yarn, so reducing the number of degrees of

freedom is not straightforward. In addition, sheet models only generate con-

tact processing work when the sheet collides with objects or folds over and col-

lides with itself, but yarn models derive their whole behavior from the thou-

sands of self-collisions within the fabric’s structure. These yarn self-contacts are

what create the rich and interesting deformations, so they cannot simply be dis-

carded. Ultimately, in order to make yarn-based simulation of character-sized

garments practical to simulate, the model must be further approximated while

3

still preserving the same overall quality of motion.

The remainder of this thesis is organized as follows: In Chapter 2, the basics

of cloth structure are presented, while Chapter 3 discusses prior work on cloth

simulation both in computer graphics and in other fields. Chapter 4 presents the

yarn model and performs a qualitative validation to laboratory tests. Chapters 5

and 6 both look at different types of approximations that can be made in order to

achieve further speedups to bring the simulation into the realm of practicality,

with Chapter 5 exploring speedups through localized rigidification and Chap-

ter 6 defining an approximate contact response which preserves quality while

providing significant speedups. Finally, Chapter 7 discusses the challenges in

constructing the initial yarn models, and Chapter 8 discusses some future av-

enues of research in yarn-based cloth simulation.

4

CHAPTER 2

CLOTH AT A GLANCE

Modeling the cloth at the yarn level requires, quite naturally, an understand-

ing of the underlying geometry in real cloth. Section 2.1 discusses the geometry

of cloth, which is formed from yarns and categorized based on how the yarns

are interrelated. This geometry leads to distinct mechanical properties of dif-

ferent kinds of fabric, covered in overview in Section 2.2, and capturing these

properties automatically and efficiently will be the goal of the yarn-based cloth

simulators in Chapters 4, 5, and 6.

2.1 Cloth Structure

The discussion in this section is meant to be a general introduction to cloth struc-

ture, in particular knits, and it is drawn in general from several sources [103, 99,

94].

Cloth is composed of yarns1, which are themselves composed of fibers, ei-

ther long filaments like silk or shorter fibers like cotton twisted so that friction

holds the yarns together. This friction plays an important role in the overall be-

havior of the yarn [17], as it tends to inhibit relative movement of the fibers at

the core of the yarn, and as a result the yarn as a whole resists stretching. Yarns

can also be made of multiple plies, where each ply is a single filament or group

of twisted staple fibers.

In general, cloth can be divided into three broad categories: felt, woven, and

knit fabrics. Felt, or nonwoven, fabrics are formed by individual fibers matted

and compressed together, with a largely chaotic and random entanglement be-

1common usage usually refers to thin, < 1mm diameter yarns in most fabrics as ‘threads’
and thicker yarns used for hand-knitting as actual ‘yarns’; in the textile community, both of
these are considered to be just yarns

5

tween the fibers leading to structural stability. In contrast, both woven and knit

fabrics rely on regular and repeated patterns of entanglement between yarns.

Woven fabrics are composed of two sets of yarns, the warp and the weft, orga-

nized into two perpendicular directions on the cloth surface. At each crossing

of a warp and weft yarn, either the warp or the weft yarn will be on top, and

different types of woven fabric will have differing patterns of yarn crossings,

with the vast majority being a repeated tiling of some small (on the order of

6 × 6) pattern. Yarns can be woven quite densely; for example, bedsheets can

commonly contain upwards of 300 yarns per linear inch.

In contrast, the yarns in a knitted fabric are organized into a regular set of

loops. There are two types of knitting, weft and warp, with almost all hand-

knitted materials and the majority of machine knitted materials using weft-

knitting [99]. In weft-knitting, the yarn runs horizontally, with the loops from

each horizontal row of a knit pulled through the loops of the previous row, ei-

ther in a “knit” stitch (up through the previous loop) or a “purl” stitch (down

through the previous loop). The two primary directions in a knit are called the

course and the wale, with the course traveling in the direction of a single row of

loops and the wale traveling in the direction of the stack of loops. Typically in

weft-knitting, when the yarn reaches the end of a row of a knit it then doubles

backs and forms the next row as well. Alternatively, for cylindrical shapes like

hats and socks, the yarn at the end of one row can be seamlessly knit into the

start of the row, forming the next row. As a result, weft-knits can consist of only

a few yarns, which is in contrast to woven fabrics and warp-knits which con-

sist of many yarns. The first and last row of stitches are special stitches known

as cast-ons and bind-offs, respectively, which serve to keep the knit from un-

raveling; although there are several styles, in general they are looped through

6

Stockinette Knit Garter Knit

2-2 Rib Knit Woven Cloth

course

w
al

e

Figure 2.1: Interlocking loop structures of three knitting patterns and woven
fabric.

their immediate neighbors in both the course and wale direction, as opposed

to normal knit loops which are in general looped only through their immediate

neighbors in the wale direction. The beginning and end of the yarn is either

pulled back through the fabric several times and held in place by friction or

simply knotted off.

2.1.1 Knit Geometry

Alternating between knit and purl stitches results in much of the variety in knit-

ted fabrics, with three of the most common varieties being the stockinette (all

“knit” stitches), the garter (alternating rows of “knits” and “purls”), and the 2-2

rib (each row consists of repetitions of 2 “knit” stitches followed by 2 “purl”

stitches)2. Figure 2.1 shows samples of these three styles of knitting from above.

The garter is the simplest of the three, and has the same overall pattern on both

sides of the fabric. In comparison, the stockinette is different on the front and

2When hand knitting, the work is typically turned over after each row, which reverses the
notation of stitches (i.e., a “purl” stitch when flipped looks like a “knit” stitch from the front). As
a result, these definitions of a stockinette and a garter are reversed from standard hand-knitting
definitions.

7

Figure 2.2: Views of three knitted samples.

the back, which leads to some dramatic curling behavior on the edges. The rib is

much shorter in the course direction than either of the other two, again because

of this same curling behavior. As can be seen from the pattern, it is essentially

2 columns of the front side of a stockinette followed by 2 columns of the back

side of a stockinette. These columns curl like the regular stockinette, with ad-

jacent columns curling in opposite directions, compressing the rib knit greatly

and giving it a tremendous degree of stretchiness in the course direction; typ-

ically, the cuffs of shirts and sweaters and the ankles of socks are made out of

ribbed stitching. Examples of these fabric are shown in overview in Figure 2.2.

There are a wide variety of stitches beyond knits and purls, however, lim-

ited only by the skill of the knitter or the capabilities of the machine creating

the fabric [81, 71, 116]. For instance, increases / decreases change the number

of loops per row of fabric, allowing the fabric to change size, in some instances

in a hyperbolic fashion [106]. There are a wide variety of stitches which cause

increases/decreases, some of which may add decorative holes or other inter-

esting features in the final fabric. Stitches can be reordered in a given row as

well, forming three dimensional features called cables to appear in the fabric. In

a cable, certain rows contain a stitch interchange, where for instance the third,

fourth, and fifth loops are pulled through the sixth, seventh, and eighth loops in

the previous row and vice versa. This causes the fabric to curl over, forming the

8

Stitch Diagram Stitch Geometry Real Sample

Figure 2.3: Stitch diagram, geometry, and real sample of a cable stitch

appearance of two twisting columns of knit fabric. See Figure 2.3 for an exam-

ple of a cable stitch, where the rows with loop interchanges are shown in blue.

This complex assortment of possible stitches and topological structure means

that knitting instructions can be quite complex, although an individual piece of

clothing will typically only use a small subset of the overall space of stitches.

2.1.2 Constructing Knits

Knits can either be hand-made or machine-made. When constructed by hand,

the knitter typically uses a small number of needles, with only two needles “ac-

tive” at any given time (other needles hold currently unused stitches). For right

handed knitting, the needle in the left hand holds the stitches from the previous

row, while the right hand needle holds stitches in the current row. For the most

basic type of knitting, knit and purl stitches, the right hand needle is slipped

through the lastmost stitch on the left hand needle (from the previous row), the

yarn is wrapped around the right hand needle, and then pulled through the old

loop, producing a new loop through the previous stitch. The stitch on the left

hand needle is then slipped off, leaving a new loop on the right hand needle.

When the left hand needle has no more stitches, the two needles are exchanged

9

and knitting proceeds to the next row, albeit from the opposite side of the work.

More complicated knit stitches and patterns are created by extensions to this

basic model, e.g. knitting through two stitches at once, slipping a stitch from

left to right without knitting through it, etc.

In contrast, machine knitting typically consists of a large number of nee-

dles, with each needle holding a single stitch and designed such that a simple

repeated motion will cause a new stitch to be created and the old stitch simul-

taneously to be slid off the needle. Machine knitting can reproduce most hand-

knitting features in a significantly faster time and at sizes generally too fine for

hand-needle work. See [99] for an in-depth discussion of knitting techniques,

particularly machine knitting.

2.2 Cloth Dynamics

As a result of its construction, the deformations of cloth are multiphasic, par-

ticularly when being stretched. Duhovic and Bhattacharyya [28] contains a

discussion on the various modes of yarn deformation and where in the force-

displacement curve they are most prominent. When under tension, the cloth

first begins unrolling from any compression caused by curling. This is particu-

larly evident in ribbed knits, where the columns of the front-facing stockinette

stitch are pulled apart, revealing the columns of back-facing stockinette stitch.

After that, the cloth then begins deforming its woven or knit structure. In the

case of a woven fabric, the warp-weft intersections become compressed, while

in a knit fabric the loops are stretched in one dimension while being compressed

in the other. Because the loops are typically free to undergo much larger defor-

mations than the compression of the intersections in a woven fabric, knits tend

to be much stretchier than their woven counterparts. At some point, however,

10

the cloth is unable to deform much more in this fashion and so additional load

causes the yarns themselves to stretch. As noted above, though, yarns are very

resistant to stretching, which results in a sharp increase in the slope of the force-

displacement curve at this point.

It is also important to note that stretching behavior in one dimension affects

the characteristics of the other dimension as well. For instance, in a knit, as

the loops are stretched in one dimension they compress in the other dimension,

sometimes quite noticeably; as a result, capturing these couplings is important

for visual accuracy. Although some current cloth simulators are capable of ex-

pressing these types of relationships, it can be difficult to tune the parameters

correctly, and oftentimes they are ignored.

Because of the complex internal structure of cloth composed of yarns which

are themselves composed of fibers, all of which is highly contact-mediated, ap-

proximations to the dynamics are typically required for tractability, with corre-

sponding reductions in the accuracy of the result. The following chapter dis-

cusses various previous approaches to dealing with this complex material, and

where and how they deviate from capturing the true mechanical properties of

cloth.

11

CHAPTER 3

PRIOR WORK

Research in accurate cloth simulation cuts across at least three major dis-

ciplines — computer graphics and simulation, textile manufacturing, and en-

gineering applications — each with their own notions of accuracy and speed

required. This section presents an overview of related work in cloth modeling

and simulation in all three of these domains. Section 3.1 discusses various mod-

els for cloth and yarn simulation at both the macro- and meso-scale, as well

as other models and techniques which are used to accelerate these approaches.

Section 3.2, meanwhile, discusses methods for resolving contact in simulation,

as this will be the main cost of simulation for yarn-based models.

3.1 Models

3.1.1 Elastic Sheets

Cloth has been modeled in a variety of different ways in the literature. Per-

haps the most straightforward approach, and the one primarily used in the com-

puter graphics community, is to treat the cloth as an elastic sheet, typically one

that is linearly elastic and isotropic. These models are either explicitly continu-

ous [107] or a discrete approximation to some continuous surface [4], with the

latter becoming the dominant approach over time for the relative simplicity in

its implementation. The cloth is approximated as a mesh, with the degrees of

freedom the vertices of the mesh and mass typically lumped at the vertices. De-

pending on the underlying model, this mesh may be enforced to be a rectilinear

grid [23, 39] or a general triangular mesh [4, 43]. Forces are then defined at each

vertex which locally resist stretching in the the two primary directions, along

12

stretch springs

Rectilinear Grid Triangle Mesh

shear springs
bending springs

stretch / shear

bending

Figure 3.1: Rectilinear and triangular mesh cloth models.

with shearing and bending; these forces can either be generated from explicit

springs between the vertices of the mesh or from forces defined as a result of

the deformation of each triangle from its rest configuration. Figure 3.1 shows

a diagram of the model for both rectilinear grids (using springs) and triangu-

lar meshes. Finally, damping is added, again typically as a linear damping of

the velocity in the direction of each mode (stretching, shearing, bending) [4].

For the common case of linear elastic forces, this results in a single stiffness and

damping parameter for each of the four penalized deformation modes.

Extensions to these models have focused on speeding up the computation

time [114], simulating stable behavior under compression [23], revised models

of bending [15, 43], or stable collision processing (see Section 3.2.1). Focus has

also gone into limiting the amount of stretching fabric can undergo, either by a

strain-limiting iterative process [90, 16, 118], a constraint satisfaction phase [39],

or nonconforming elements [32]. While simulation speeds are relatively fast,

there is in general a problem of mapping physical cloth properties to the pa-

rameter space of the elastic model. Jojic and Huang [59] used range scan data

of static cloth configurations to estimate the elastic parameters. Bhat et al. [11]

13

used video data of moving cloth to estimate the elastic and damping parame-

ters, with the experimentally determined parameters for the knit sample vary-

ing noticeably; this suggests that the elastic model may not be a good fit for

knitted materials.

Due to the internal structure of cloth, however, these linear forces can be

a poor match for the true behavior of cloth. More recent work has looked at

accurately simulating the nonlinear forces that occur in fabric, derived from

measured stress-strain relationships [113]. This can work well for capturing

global deformations; however, it requires the force curve for each material to

be known or measured in advance. In addition, if the deformation of threads is

visually noticeable and nonlinear (such as for a ribbed knit being stretched) they

must be modeled separately, since the model only deforms at the mesh element

level. Yeoman et al. [121] adapted a nonlinear model used for soft-tissue to the

case of knits and used a genetic algorithm to fit model parameters to measured

fabrics.

3.1.2 Rods

Modeling yarns explicitly typically relies on some underlying model for thin

flexible rods. These have been studied extensively in computer graphics in re-

cent years [82, 10, 42, 109, 101]. The rod is typically modeled as a centerline plus

material frame, which is needed to compute bending and twisting energies in

the rod, particularly in non-straight rest configurations. Bergou et al. [9] defined

an efficient discretized form of thin rods that supports an anisotropic bending

response and non-straight reference configurations. This was followed up by

additional work which further improved the efficiency of the underlying ma-

terial frame representation [7], developed concurrently with the description in

14

Section 4.5.1. Contacts between rods can be resolved precisely using inequality

constraints [102], but this does not allow for lateral compression of soft yarns

as penalty-based models do, requiring explicit modeling via additional degrees

of freedom. More recent work has looked at a unified representation of elastic

materials in one-, two-, and three-dimensions using an element which allows

for measurement of elastic deformations along any axis [69].

In the textile community, research has also looked at fiber-level models of

yarns and how the interactions at the fiber level lead to yarn-level behavior,

particularly bending rigidity [83, 84]. Notably, Choi and Tandon [22] develop a

model of a multi-ply yarn, showing that their model reasonably approximates

experimental results and predicts the strain energy of bending to be approx-

imately quadratic with respect to the curvature. More recently, the torsional

characteristics of yarns, particularly multi-ply yarns, was examined by Phillips

et al. [88].

3.1.3 Yarn-Based Cloth

Several models have attempted to address the fact that cloth is comprised of

a discrete set of yarns. Geometric modeling of yarns arguably began with

Peirce [86], who derived a set of parameters and equations for modeling the

crossing of yarns in a woven fabric as inextensible curves. Kawabata et al. [62]

proposed a beam and truss model for yarn crossings in a woven fabric, as

well as a system for measuring the physical force curves resulting from stretch,

shear, and bend motions of cloth. Further work has extended this model to

support analysis of non-plain-weave fabrics [89]. Variations of the beam-and-

truss model have been used in the textile community to simulate the behavior of

plain-weave fabrics like Kevlar [122]. The beam-and-truss model has also been

15

adapted to model a unit cell of the fabric, which can then be used to drive the

behavior of finite elements in a continuous sheet [66, 85]. Similar to the beam

and truss model is the rigid bodies of Xiao and Geng [120], where the yarn

crossings are treated as inextensible rigid lines and forces are defined to connect

neighboring yarn crossings in a plain weave.

Other work has looked at approximating the behavior of woven fabric via

specialized elements. Zhang and Fu [124, 125] considered a woven cell of fab-

ric to be a hinged square truss and considered the buckling due to shear in

both the warp-parallel and diagonal directions; further work considered shear

in arbitrary directions [126]. Peng and Cao [87] convected a non-orthogonal co-

ordinate system corresponding to the warp and weft directions of woven fabric

and used it to derive the mechanics of thin shell elements; it relies on the de-

coupling between stretching and shear forces which is in general true for low

shearing angles. Hamila and Boisse [50] used a semi-discrete triangular finite

element that interpolates a discrete set of yarns in a defined material frame to

compute stretching and in-plane shear response; it does not, however, consider

the bending response or the effect of yarn crimping, although later work con-

siders bending forces [49].

The system for measuring cloth was later formalized into the Kawabata

Evaluation System (KES), and is commonly used to extract cloth properties from

samples [61]. The measurements for a particular fabric can then be fed into a

simulator, e.g. a mass-spring system [56], in order to replicate the behavior of

the cloth. However, as noted earlier, this is limited to fabrics for which a phys-

ical sample exists and has been tested in the KES evaluation system. Bridging

the gap between elastic sheets and textiles, models have also been developed

for testing and predicting the Poisson ratio of both woven [105] and knit [58]

16

fabrics.

In computer graphics, Breen et al. [13] and Eberhardt et al. [31] modeled

woven fabric as a particle system, where a particle ideally represented a yarn

crossing. Metaaphanon et al. [72] modeled cloth as a sheet until it is sufficiently

stretched, at which point a yarn model is substituted in; however, this yarn

model is meant to create physically realistic frayed edges when the cloth tears

and not as a fundamental source of cloth behavior.

Woven yarn crossings have also been modeled as a pair of curves [119].

Nadler et al. [78] employed a two-scale model, treating cloth at the high level

as a continuous sheet, and at the fine level as a collection of pairs of orthogonal

curves in contact with each other, with feedback from the fine scale driving the

simulation of the large scale. Yarns have also been modeled as splines, with

Rémion [93] developing the basic equations for using splines in a knit; how-

ever, they used springs between the control points to preserve length. Jiang and

Chen [57] used a spline-based yarn model to generate plausible static woven

fabric configurations. Other simulations of woven materials for ballistic impacts

include finite element modeling of the yarns as hexahedral elements [45, 123].

Some work has examined woven materials at extremely high levels of de-

tail. Durville [29] modeled woven fabrics at fiber level, with models consisting

of up to 400 fibers. Other work has modeled yarns as elastic materials using

highly detailed finite elements, simulating a representative cell of plain-woven

fabric [3, 67].

The work of Chu [24] is similar to the model presented in Chapter 4, in that

both use B-splines to simulate fabric with similar terms for collisions, but the

former is focused on woven fabrics and allows the yarns to stretch, which re-

quires a much smaller timestep for stable results. In addition, the integral for

17

the contact model is approximated by using closest points in a set of contacts

predetermined by the cloth structure at initialization time.

Because of their relative complexity compared to woven fabrics, knits are

not as well-studied, although they have been increasingly so in recent years.

Wada et al. [115] used a geometric model for loop deformation, assuming uni-

form loops, and modeled contacts between loops using springs. Eberhardt et

al. [30] modeled knits as a continuous sheet with force curves derived from

Kawabata measurements. Nocent et al. [80] deformed a thin sheet and pro-

jected the changes to the sheet to an underlying spline-based geometry. Sev-

eral works in the textile community have focused on generating knit geometry

using spline curves, typically assuming incompressible yarns and specific geo-

metric constraints [27, 38, 20, 21]; only Choi [20, 21] attempted to simulate the

resulting geometry. Chen et al. [19] are primarily concerned with rendering knit

geometry, and used as their base model a system of key points mapped to a

mass-spring mesh.

Similar to the fiber-level simulations of woven materials, Duhovic and Bhat-

tacharyya [28] performed simulation and analysis of small-scale knitted struc-

tures created out of fibers grouped into yarns. In addition, the overall energy

contribution from deformation was broken up into individual contributions

from bending, twisting, and stretching the fibers, which were then validated

against real samples. Other work has performed detailed FEM analysis of the

behavior of a representative cell of plain-knit geometry [47, 110].

3.1.4 Corotational

Corotational finite-element methods are commonly used in graphics for solid

deformation. Müller et al. [75] popularized these techniques in graphics, ini-

18

tially via node-based “stiffness warping,” then, to overcome undesirable “ghost

forces” due to element-level momentum imbalances, using rotated linear ele-

ments [74] (c.f. [35]). Corotational elements have also been used for sheet-based

cloth simulation [33]. Shape-matching methods also use rotated frames to esti-

mate “goal positions” for deformation forces [77, 95, 104].

3.1.5 Model Reduction

Model reduction techniques have been devised to accelerate sheet-based cloth

and other deformable models in graphics by reducing the number of simulated

degrees of freedom. Effective methods have been proposed for spatially adap-

tive mass-spring systems [54], sheet-based cloth models [111], and rod simula-

tions that resolve challenging contact configurations such as knot tying [102].

For articulated rigid bodies, research has looked at adaptively selecting the

joints to simulate in order to speed up the simulation [92]. Space-time adaptive

simulation of deformable models can resolve localized contacts efficiently for

real-time simulation [26]; and multi-scale basis refinement can reduce meshing

issues for spatial adaptation [44]. Unfortunately, multi-resolution/adaptive ap-

proximations are difficult for knitted cloth given its complex geometric domain

and topology, high number of degrees of freedom, and widespread self-contact.

Homogenenization techniques have been proposed to coarsen discrete sim-

ulation models while resolving inhomogeneous material response [64], and

to support deformation of complex embedded geometry [79], but neither ad-

dresses fine-scale internal forces which are contact mediated. Dimensional

model reduction techniques have been proposed to generate fast, low-rank sim-

ulation models for complex geometric domains [6, 1] and thin shells [18], but

knitted cloth motions do not necessarily lie in low-dimensional subspaces, and

19

specifying them a priori for precomputation purposes would be impractical. Re-

cently, Kim and James [65] showed how to adapt subspace deformation models

on the fly to avoid precomputation; however, they do not address contact forces.

Although they do not fall into the classical notion of model reduction, in re-

cent years research has also looked at adding detail to a low-resolution simula-

tion, usually as a post-processing step. TRACKS [8] takes as input a low resolu-

tion mesh, produced from either simulation or user animation, and simulates a

high resolution deformable model that tracks the overall motion of the low reso-

lution mesh while allowing fine-scale wrinkling. Data-driven approaches have

also been used, synthesizing wrinkles generated from a database of high resolu-

tion meshes simulated using either independent character joint rotations [117]

or similar character motion [36]. Rohmer et al. [96] generated a set of plausible

wrinkle curves as a post-processing step, evolving the curves through time in

a temporally coherent manner and deforming the high resolution mesh accord-

ingly. Although these methods add additional detail to a coarse simulation, the

details are in most cases physically plausible but not necessarily physically ac-

curate. Moreover, the overall motion depends heavily on the motion of the low

resolution mesh and, thus, on its accuracy, which as discussed may not be very

good for knits.

3.2 Contact and Collision

3.2.1 Deformable Meshes

Resolving cloth self-contact is incredibly important for robustness, and as a

result much research has gone to efficiently and correctly responding to self-

intersection. Detection of interpenetration is commonly performed using over-

20

lap tests accelerated by spatial subdivisions, hash tables, or bounding volume

hierarchies [108]. In addition, continuous contact detection is employed to de-

tect contacts that occur during the timestep, preventing the mesh from inter-

penetrating [16]. Interpenetrations are usually corrected with impulse forces,

with as a last resort contacts grouped into impact zones and their motion re-

solved either rigidly [91, 16] or via inelastic projection which allows for relative

sliding [52]. Selle et al. [98] used a mass-spring system with strain limiting to

simulate hair and a similar application of impulses to resolve contact. As they

note, however, any hair state is innately intersection-free, and as a result they

can ignore certain contacts, which is not possible in yarn-based cloth since it

would lead to unravelling.

Further work has advanced the speed of cloth self-collision; however, many

of these schemes are not applicable to yarn-based models since they are inher-

ently sheet-based, e.g., curvature tests [112], normal cones [91], and chromatic

decompositions [41]. As a different approach, Baraff et al. [5] considered inter-

penetration to be an inevitable result of interacting with user-animated charac-

ters (such as pinching in shoulders and elbows), and instead determined areas

of the mesh which have interpenetrated and generated forces which smoothly

resolve the interpentration when possible. Even in the case of sheet-based cloth,

though, there are scenarios where it is difficult to determine the force needed to

resolve the interpenetration. Moreover, it relies on the sheet-based nature of

cloth to determine intersecting areas and so is not directly applicable to discrete

yarn models.

21

3.2.2 Generalized Contact

Identifying and tracking persistent contacts is related to space-time scheduling

and collision processing [73, 46], which have been widely considered for main-

taining proximity information for moving objects [53, 37]. Mirtich’s Timewarp

method [73] investigated related strategies for collision detection and manage-

ment of persistent contact groups for asychronous rigid-body simulation. For

deformable models, Harmon et al. [51] used asynchronous contact mechanics

and infinitely nested potentials to adaptively simulate penalty-based contact;

however, their emphasis was on correctness for general scenarios, and not per-

formance for hundreds of thousands of persistent yarn contacts.

22

CHAPTER 4

YARN MODEL

4.1 Overview

As opposed to sheet-based cloth simulation, which models cloth as a continu-

ous surface, yarn-based cloth simulation explicitly models the individual yarns

that comprise the cloth. The number of yarns can vary dramatically depending

on the material and the garment constructed, with weft-knits typically contain-

ing 1–10 yarns and wovens and warp-knits containing hundreds to thousands.

Without loss of generality, assume in the following sections that the cloth mod-

els are constructed using a single yarn.

Sections 4.2 and 4.3 discuss the original yarn model, while Section 4.4 vali-

dates and analyzes the simulation results. Section 4.5 details further improve-

ments to this model that increase the speed and quality of results. Finally, Sec-

tion 4.6 draws conclusions from this approach and discusses how further speed

improvements can be achieved via the techniques in Chapter 5 and, more im-

portantly, Chapter 6.

4.2 Rod Model

The yarn is an open cubic B-spline curve containing n segments with a constant

radius of r, described by the control points q ∈ R3(n+3). In general, indices i, j

range over spline segments, while indices k, l range over control points. The

curve is described by y(s) =
∑
bk(s)qk, s ∈ [0, n], where bk(s) is the cubic B-

spline basis function associated with control point k. Similarly, the velocity of

the yarn at parametric point s is v(s) =
∑
bk(s)q̇k. For convenience, the curve

23

restricted to a particular spline segment i is denoted yi(s), s ∈ [0, 1] (and vi(s)

for the velocity). Each spline segment has a fixed arclength `i. The yarn has a

mass per unit length of munit, and mass is spread along the curve according to

the function m(s) =munit`bsc, a piecewise constant function that assigns mass to

segments according to their arclength and then spreads the mass uniformly in

parameter space.

The yarn’s time evolution is modeled using the equations of motion of con-

strained Lagrangian dynamics; Goldstein et al. [40] have a further description

of Lagrangian mechanics, while Rémion et al. [93] apply it to spline curves. In

addition, some of the stiffer properties of the cloth are enforced via holonomic

constraints, which are algebraic conditions on the geometry that must be true at

every timestep. The result is a differential algebraic equation (DAE) [14, 2, 48]

of the form,

M q̈ = −∇qE(q)−∇q̇D(q̇) + f (4.1)

C(q) = 0, (4.2)

where M is the mass matrix, E(q) is the sum of all positional energy terms,

D(q̇) is the sum of all damping energy terms, f are external forces, and C(q)

is a vector of constraint functions. These terms are expanded in the following

subsections; see Figure 4.1 for a high-level view of the terms involved.

4.2.1 Internal Forces

The kinetic energy of the yarn is:

T (q̇) =
n−1∑
i=0

munit `i

∫ 1

0

vi(s)
Tvi(s) ds (4.3)

In order to apply Lagrangian mechanics, d
dt

(∇q̇T (q̇)) must be computed. By

expanding the integral on the right hand side of Equation 4.3, ∇q̇T (q̇) can be

24

Intra-yarn forces Inter-yarn forcesKinematics

length constraints

B-Spline
Curve

length
energy

bending
energy

viscous
damping

collision
energy

non-rigid
damping

collision
damping

Figure 4.1: Summary of yarn-level model

rewritten as Mq̇, where

Mk,l=

∫ N

0

m(s)bk(s)bl(s)ds.

Because this depends only on the arclengths, munit, and basis functions, all of

which remain constant during simulation, this matrix can be precomputed, and

because the cubic B-spline functions have local support, the matrix is sparse

with upper and lower bandwidth of 12. Taking the derivative with respect to t

yields Mq̈, the left hand side of (4.1)

Bending resistance is modeled by a bend energy density functional which is

quadratic in curvature:

Ebend
i = kbend `i

∫ 1

0

κi(s)
2 ds, (4.4)

where κi(s)=
‖y′i(s)×y′′i (s)‖
‖y′i(s)‖3

is the curvature of spline segment i at s.

Because of their high resistance to stretching relative to the cloth, yarns are

modeled as inextensible rods. Ideally this would be a constraint at the infinites-

imal level; however, since there are only a finite number of degrees of freedom,

applying the constraint at too fine a level would result in locking behavior. To

avoid this, this model defines one length constraint for each spline segment

C len
i = 1− 1

`i

∫ 1

0

‖y′i(s)‖ ds. (4.5)

25

This constraint ensures that the total length of the segment remains constant,

but it does not necessarily keep the mass of the spline from sliding around inside

the curve as the parameterization speed changes; as long as the overall length is

constant, the infinitesimal length can change without penalty. This can be pre-

vented with an additional energy term which resists sliding at an infinitesimal

level:

E len
i = klen

∫ 1

0

(
1− ‖y

′
i(s)‖
`i

)2

ds, (4.6)

where klen is a stiffness coefficient. It should be noted that this term does not

have to be particularly stiff due to the use of length constraints, since it only

needs to resist the stretching or compression of mass in a local area. For instance,

in a piece of yarn hanging vertically, klen only needs to be stiff enough to support

the weight of a single spline segment, while without the constraint term klen

would need to be stiff enough so that the first segment could support the weight

of the entire yarn.

4.2.2 Self-Contact Forces

Yarn-yarn collision forces are modeled with an energy term,

Econtact
(i,j) = kcontact `i`j

∫ 1

0

∫ 1

0

f

(
‖yj(s′)− yi(s)‖

2r

)
ds ds′, (4.7)

for i, j such that i 6= j, where f(d) is defined such that f(d)→0 as d→1, f ′(d)→0

as d → 1, and f(d) → ∞ as d → 0. Ideally, this function should capture the

behavior of the yarn compression forces, but these are a complicated function

of yarn type and local fiber interactions and are in general difficult to measure

exactly. However, acceptable results are achievable with simpler choices for this

26

function, such as the one used in this model:

f(d) =


1
d2

+ d2 − 2, d < 1

0, otherwise

 . (4.8)

In practice, this collision model tends to be physically and computationally

more robust than ones based on closest point distances while by definition also

automatically handling arbitrary cloth self-collisions such as those seen in fold-

ing and bunching. As a result, the same force model is used to resolve both

structural contacts, i.e. the persistent contacts that are due to the regular loop-

ing nature of the knit, as well as transient contacts, i.e. those arising temporarily

due to the particular configuration of the cloth. In addition, yarns are typically

relatively soft and can be laterally compressed, which this model allows for

without any additional degrees of freedom, unlike other models based on hard

interpentration constraints. Note also that it is symmetric, so if the contact force

is computed between segments i and j, it is obviously the same as the force

between segments j and i

4.2.3 Dissipative Forces

Damping and friction in knitted cloth structures are complex, with significant

hysteresis effects. The interlooped structure of knits creates large numbers of

interlinked contact regions, and for yarns made of short fibers the direct contact

between yarns creates entanglements between the mass of intertwined stray

fibers, or “fuzz,” which resist relative motion between nearby yarns. The basic

effect of these interactions is to rapidly damp out oscillations and deformations,

one of the notable ways in which cloth differs from elastic sheets. In addition,

these frictional forces are one of the prime sources of hysteresis in cloth. Al-

though a full treatment of these interactions remains an interesting and difficult

27

open question, in practice the following three damping models have proven

themselves to be effective at achieving similar results (see also §4.5.2 for further

improvements including hysteresis).

Mass-proportional damping

This is a classic way to dissipate any motion. Damping is applied uniformly to

the yarn according to the following damping energy term:

D
global
i = kglobal

∫ 1

0

vi(s)
Tvi(s)ds. (4.9)

Because the density of the yarns is constant, the mass dependence is effectively

pushed into kglobal. This model is particularly effective during knit structure

initialization (Chapter 7), as it allows the material to stably settle into its rest

configuration. However, during actual simulation, excessive mass-proportional

damping creates an overwhelming and undesirable sense of “underwater”

cloth, and as a result kglobal is typically turned off after initialization, with the

following two damping models instead used to damp the motion of the cloth.

Yarn-Yarn Contact Damping

A yarn-yarn collision damping termDcollision
(i,j) is used both to damp the stiff yarn-

yarn contact forces and to approximate sliding friction, defined as:

Dcollision
(i,j) = `i`j

∫ 1

0

∫ 1

0

cij(s, s
′)
(
kdt‖∆vij‖2− (kdt−kdn)(n̂Tij∆vij)

2
)
ds ds′, (4.10)

where kdt≥ 0 controls damping in the tangential direction, and kdn≥ 0 controls

damping in the normal direction; ∆vij =∆vij(s, s
′)=vj(s

′)−vi(s) is the relative

velocity; cij(s, s′) = 1 if points s and s′ are in contact according to Equation

(4.8) and 0 otherwise; and n̂ij = n̂ij(s, s
′) is the normalized value of the collision

direction, nij(s, s′)=yj(s
′)−yi(s).

28

Small rigid damping
region (repeat every
row / column)

Large rigid damping
region (repeat every
2 rows / 2 columns)

Figure 4.2: Regions used for the non-rigid damping velocity filter

Non-rigid motion damping:

As noted earlier, accounting for the dissipative effects of “fuzz” properly is a

rather difficult problem. Modelling it explicitly is challenging due to the large

number of fiber interactions; however, ignoring it entirely is not an option either

since it contributes to the high degree of damping in cloth while deforming. For

the time being, this model uses a simple approach that works well in practice,

but improvements in this area is a topic for further research.

In order to resist relative motion between nearby sections of yarn, non-rigid

motions [76] within the cloth are damped. The cloth is broken up into fixed

overlapping regions as in Rivers and James [95], and at each timestep the center

of mass, angular momentum, and inertia tensor of each region are computed,

which allows the computation of the expected rigid velocity vrigid(s) of each

point in the region. The yarn in each region is then damped according to

drigid(s) = −αm(s)

hr(s)
(v(s)− vrigid(s)), (4.11)

where the damping response is more naturally expressed as an explicit force

instead of the gradient of an associated damping function. The parameter α ∈

[0, 1] controls how strong the damping is, and r(s) is the number of regions

containing the point s. In practice, this is not treated as an energy term, but is

29

instead integrated using a velocity filter (see Section 4.3.3).

There are several ways to break up the cloth into regions. In the current

simulator, nonrigid damping is applied as a two-pass filter over parametrically

static regions defined during yarn initialization, first heavily damping small

regions of two yarn loops and then damping the motion of larger regions (see

Figure 4.2). The first pass is designed to damp out motion locally where the

yarns loop around each other, and the second pass damps stretching, shearing,

and bending modes.

4.2.4 External Forces

Gravity is simple to treat as an energy potential:

E
grav
i =

∫ 1

0

m(s)gTyi(s)ds. (4.12)

where g is the direction and magnitude of gravitational acceleration.

In order to prevent knitted cloths from unraveling in real knitted fabrics, the

end of the yarn is typically either knotted off or pulled through several loops

and held in place by friction. The same effect is accomplished in this model by

“gluing” the end of the yarn to another piece of yarn via a constraint of the form

Cglue = y(s1)−y(s2) for particular choices of s1 and s2. Similarly, when the cloth

needs to be pinned in place, vector constraints of the form C
pin
i = y(si)− pi are

inserted. Like for the length constraints, it is important to avoid introducing

too many hard constraints, which can lead to overconstrained or near-singular

systems or degraded quality in yarn dynamics. This can be done by combining

a hard pin constraint applied every few spline segments with energy terms of

the form kpin(C
pin
i)T (C

pin
i) applied at yarn points between the hard constraints.

Object contacts are handled in two different ways, depending on the way the

object is defined. For objects defined over an implicit surface (for example, the

30

leg in Figure 4.9), contact is handled as a penalty force modeled via an energy

term:

E
obj
i = kobj

∫ 1

0

(f(yi(s))− f0)
2, f(yi(s)) < f0

0, otherwise

 ds, (4.13)

where f(y) is the function for the implicit surface and f0 is the desired isolevel.

Corresponding damping forces are also included in the contact evaluation (anal-

ogous to yarn-yarn collision damping (4.10)). Alternately, for objects with dis-

tance fields (such as the scarf falling on a plane), a force can be calculated which

will bring the yarn to the surface of the object as well as applying an approx-

imate friction response. In practice, instead of being computed as an explicit

force it is instead computed as a velocity filter (Section 4.3.3, Bridson et al. [16]).

4.3 ODE Integration

Implementing this yarn-level model requires careful choice of simulation meth-

ods and attention to several crucial details in evaluating the terms presented in

Section 4.2. Figure 4.3 contains an overview of the steps in the simulator. See

also Section 4.5 for further improvements to the model and integrator.

4.3.1 Integration Method

The DAE is stepped forward in time using the Fast Projection method [39], us-

ing Algorithm 1 in that paper. An explicit midpoint step is used as the un-

constrained step. The algorithm iterates until convergence, with each iteration

requiring a sparse linear system solve of a matrix which depends on the inverse

mass matrix and the Jacobian of the constraint function. To speed up the sim-

ulation and simplify inverse mass computation, the integrator lumps the mass

31

For each timestep, h
[q, v] = unconstrained step (q, v, t)
[q, v] = satisfy constraints (q, v)
v = filter velocity (q, v)
t = t+ h

end

Figure 4.3: Overview of initial time-stepping scheme

matrix along the diagonal. The matrix system itself is solved using Precondi-

tioned Conjugate Gradients (PCG) with a diagonal preconditioner. Due to the

small timesteps, at most 4-5 iterations were usually needed for acceptable con-

vergence, and oftentimes only 1 or 2.

Although the integrals for the mass matrix, gravity, and global damping are

readily solved, the others lack efficient closed forms. As a result, the integrals

were discretized using Simpson’s quadrature at fixed positions in parameter

space, with (4.4), (4.5), (4.6), (4.7), (4.10), and (4.13) all computed typically using

11 quadrature points per spline segment.

4.3.2 Yarn Collisions

In practice, expanding the integrals in (4.7) and (4.10) is the bottleneck for the

simulation, so they must be computed efficiently. Naive evaluation is exceed-

ingly slow, because it involves a double integral over the entire yarn. However,

it should be noted that the integrand is zero over the vast majority of the inte-

gration domain, since yarn segments typically contact only a few neighbors. To

compute this integral effectively, the simulator uses spatial culling: bounding

spheres are generated at fixed quadrature points in parameter space with a ra-

dius equal to the radius of the yarn and then inserted into an AABB hierarchy

generated at the beginning of the simulation. The integral is then evaluated by

32

first updating the spatial bounds of all nodes in the hierarchy, and then intersect-

ing the hierarchy with itself to determine the quadrature point-pairs requiring

evaluation. For additional speed, all of the force computations can be computed

in parallel, as well as being parallelized themselves; this has the most practical

importance for the AABB tree traversal to find self-contacts and computing ob-

ject contacts.

Further speeding up the evaluation of yarn-yarn collisions is the focus of

Chapter 6.

4.3.3 Velocity Filters

The simulator also allows for velocity filters to update control point velocities

directly. Most previous velocity filters are used on discrete particle systems;

however, here the yarns are instead modeled as a continuous curve. In order to

filter the spline’s control points, the curve is sampled, typically using 6–10 sam-

ple points per spline segment. A desired impulse ∆v(s) is computed for each

sample point, with bk(s)∆v(s) the resultant impulse applied to the kth control

point. All of the control point impulses are accumulated and then multiplied

by the lumped M−1 to produce the actual change in velocity ∆q̇ for the con-

trol points. Finally, q̇new = q̇ + ∆q̇. To prevent impulses from affecting each

other, all impulses for a particular velocity filter are computed first, then ap-

plied together. The non-rigid damping and non-penalty-based object collisions

(for objects with distance fields) are both handled with a velocity filter.

33

Relaxation Simulation
r 0.125 cm 0.125 cm
m 0.006 g

cm 0.006 g
cm

klen 10000 g cm2

s2 2000 g cm2

s2

kbend 0.005 g cm2

s2 5 g cm2

s2

kglobal 1.5 g
s 0 g

s
kcontact 3250 g

s2 3250 g
s2

kdt 0.001–0.005 g
cm2s 0.001–0.005 g

cm2s
kdn 0.01–0.05 g

cm2s 0.01–0.05 g
cm2s

αsmall 0.3 0.6–0.75
αlarge 0.3 0.2–0.4

Table 4.1: Parameters used during relaxation and simulation.

4.4 Validation

The simulator is implemented in Java and, for the results in this section, was run

on machines with two 4-core Intel Xeon X5355 processors clocked at 2.66GHz.

Simulation parameters common to all scenes are in Table 4.1, while scene-

specific parameters and details are available in Table 4.2. The renderings were

made using a software implementation of the Lumislice method [19] in a ray

tracer which follows the original except for the following differences: it uses

volume ray tracing rather than alpha blending to accumulate light through the

volume; it uses first-order spherical harmonics, rather than a directional table,

to store the Volume Reflectance Function; and it uses distribution ray tracing,

rather than a shadow map, to compute shadows from area sources. The expen-

sive shadow computations are performed at regularly spaced points throughout

the yarn volume, then interpolated as the yarn volume is traversed. Rendering

times range from 4 to 15 minutes per frame, on the same hardware as used for

simulation.

As a first comparison, the outputs of the simulator for a set of three simple

knit patterns—garter, stockinette, and 2× 2 rib—were compared to real knitted

34

G
ar

te
r

Real Swatches Simulated Swatches

St
oc

ki
ne

tte
R

ib

Figure 4.4: Validation comparison

35

Stretch Scarf Legwarmer
h 1/11800 s 1/22500 s 1/12000 s
Avg # segs/knit loop 8 8 8
of spline segs 11264 26240 35200
collision quadrature pts per seg 20 10 10
Avg time per frame 6.8 min 10.7 min 10.8 min

Yarn Collisions 58% 57% 52%
Other energy 7% 12% 23%
Constraints 7% 9 % 19%
Velocity filters 28% 22 % 6%

Table 4.2: Scene statistics.

samples. All of the real samples were knitted using wool worsted size 8 yarn,

with each row knitted using alternating colors so that the knit structure is more

readily apparent. Each sample consists of 42 rows, with each row containing 32

stitches. The weight and diameter of this yarn was used as input parameters

to the simulated models, which consist of the same number of stitches in each

row and column. Figure 4.4 illustrates the results of relaxing an initial configu-

ration into a default rest state for the three samples compared to their real-life

equivalents. Other than the placement of knit and purl stitches according to

the model’s knit pattern, all of the other parameters for the three models were

identical, so all differences in observed shape are due solely to the differences

in input knit pattern. Note that the yarn-based model accurately predicts the

curling on the edges of the stockinette, as well as the compression of the rib knit

in the course direction and the garter knit in the wale direction. These prop-

erties arose naturally from the interactions of the yarn in the yarn-based cloth

model; in comparison, to achieve the same effect in an elastic sheet model would

require careful manual tweaking of rest angles customized for each particular

knit.

As further validation, each of the real and simulated samples were stretched

in three directions—along the course, the wale, and the diagonal between the

36

two—and the observed results compared with the simulated results, shown in

Figures 4.5, 4.6, and 4.7. For some of the directions, an additional comparison

is made with a piece of cloth simulated using an elastic sheet model [4]. For

all tests, one end of the cloth was held fixed while the other end was clamped

and moved. For the elastic sheet mesh, no yarn geometry is present, so the

control points of the knitted cloth are projected onto the mesh while both are

at rest, determining for each point its barycentric coordinates with respect to

the nearest triangle. Those barycentric coordinates are then used to deform the

control points when the mesh is deformed.

The yarn-based model predicts the characteristic shape of the knit while be-

ing stretched, in particular the tightening of the yarn loops in the garter, the

separation of the ridges in the rib when stretched in the course direction, and

the rapid curling of the ends of the stockinette. The elastic model, due to its

assumptions of infinitesimal continuity, predicts an unrealistic and inaccurate

shape for the garter and the rib as the entire cloth stretches instead of the yarns

deforming. For the stockinette, the elastic model does a reasonable job deform-

ing the yarn structure; however, it fails to curl at the ends, which happens in

both the real sample and the yarn-model simulation. The yarn model is in fact

overeager to curl compared to the sample, although this is probably due to the

lack of a complete model for yarn friction. Note that this is a rather strenuous

test resulting in stiff but stable contacts, with some of the final states depend-

ing largely on frictional forces, which are not being accurately modeled; as a

result, some of the configurations reached are unstable and tend to rapidly shift

to lower energy ones. However, despite this, the overall deformations of the

yarns in the cloth are still captured.

Figure 4.8 shows the robustness of the yarn collision model when applied to

37

C
ou

rs
e

D
ia

go
na

l
W

al
e

Unstretched Yarn Model Measurement Elastic Model

Figure 4.5: Stretch-test comparisons for garter knits.

38

C
ou

rs
e

D
ia

go
na

l
W

al
e

Unstretched Yarn Model Measurement Elastic Model

Figure 4.6: Stretch-test comparisons for stockinette knits.

39

C
ou

rs
e

D
ia

go
na

l
W

al
e

Unstretched Yarn Model Measurement Elastic Model

Figure 4.7: Stretch-test comparisons for rib knits.

40

Figure 4.8: Falling scarf

a 20× 160 knitted scarf falling onto a plane. The contact model is able to resolve

the collisions resulting from contact with both the plane and itself. The average

time per frame was about 10.7 minutes due to the small timestep used, which is

comparable to the rendering time of about 9 minutes per frame for video-quality

renderings.

Figure 4.9 shows a 44 × 96 knitted leg warmer being pulled over a foot. Be-

cause the yarn contacts are simulated directly, the simulator is able to resolve

the complicated stretching pattern as it slides over the heel. Due to the size

of the model, there are over 100 billion pairs of quadrature points that poten-

tially need to be evaluated for the collision integral at each step. However, the

bounding box hierarchy is able to quickly find the 3.7 million pairs on average

41

Figure 4.9: Leg warmer

that are in contact, using only 12 million bounding box traversals and 12 million

sphere-sphere evaluations on average.

Finally, Figure 4.10 shows a 20 × 400 scarf composed of 64,690 spline seg-

ments falling on an inclined plane. The full movie of the sequence appears in

the SIGGRAPH 2008 Computer Animation Festival [60].

4.5 Further Model Improvements

Since this validation study, further improvements to the model and simulator

for both quality and performance reasons have been incorporated. These break

down into changes to the rod model, internal friction approximation, and inte-

grator.

42

Figure 4.10: A longer scarf on an inclined plane

4.5.1 Discrete Rods

Representing the rod as a higher order continuous surface is convenient for

yarn-yarn contacts, since it allows the yarns to slide over each other without

snagging. However, this formulation can be overkill for internal yarn forces like

stretching and bending, which can be computed in a significantly coarser fash-

ion without losing much accuracy. In addition, the B-spline model proposed

in Section 4.2 only models isotropic rods with a straight rest configuration and

does not account for internal twisting of the rod, while real yarns can and do

have non-zero bending and twisting angles at rest due to both viscoelastic re-

sponse and the internal friction between fibers [63]. In particular, yarns in knits

have very non-straight rest states as a result of the knitting process, which can

43

Figure 4.11: Partially unravelled yarn showing non-straight rest configuration

be observed by unravelling a knit [68]; this can result in hysteresis in the behav-

ior of knitted fabrics [70]. Figure 4.11 shows a partially unravelled knit, where

the unraveled yarn is still in the characteristically bent shape from when it was

knitted. This non-straight rest state can be very important for the overall mo-

tion of the cloth, as yarns will in general be in a lower-energy state than that

predicted by a model which treats them as straight rods that are bent. Allowing

for these rest configurations in the model requires a notion of an internal mate-

rial frame, adapted to the yarn centerline, with bending and twisting computed

from the deformations of these frames over time.

Both of these issues can be addressed by changing the underlying rod model

to the Discrete Elastic Rod model proposed in Bergou et al. [9], while preserving

the same contact model discussed in §4.2.2. In Discrete Elastic Rods, rods are

modeled as piecewise linear centerlines consisting of n segments defined over

44

a set of control points q ∈ IR3n+3, with an adapted twist-free reference frame

u,v ∈ IR3n and a set of rotations θ ∈ IRn defined on each segment ei = qi+1 − qi

that measures the angle between the twist free reference frame and the actual

material frame. For convenience, ui and vi will denote the reference frame, θi

the rotation of the material frame, and mj
1 and mj

2 the material frame of the i-th

segment. The energy in the yarn is composed of two terms: Etwist and Ebending,

which account for the twisting and bending energy in the yarn, respectively,

and which will be defined below.

Because the material is assumed to be thin in two dimensions, twisting

waves propagate very quickly, and so the material frames are solved for qua-

sistatically at each timestep. Bending and twisting energies are computed as

closed form discrete integrals at each vertex, while yarn inextensibility can be

enforced on the piecewise linear segments, avoiding costly quadrature summa-

tions. In addition, the nonrigid damping and object contact can also be com-

puted in a significantly coarser fashion directly over the control points without

an observed loss of fidelity. Moreover, the model no longer has extra degrees

of freedom that allow mass to slide along the yarn, so the stretching energy

proposed in §4.2.1 is no longer required. Because the piecewise linear center-

line could allow yarns to snag on each other during self-contact, the contact

response is computed over the Catmull-Rom interpolating spline through the

control points of the linear discretization, which provides a smoother contact

surface without adding additional degrees of freedom.

As noted above, in Bergou et al. [9] the material frames on each rod segment

were described as a scalar rotation from a zero-twist reference frame, the Bishop

frame, defined on each segment. The time evolution of the frame depends on

the notion of parallel transport, which is a method of transporting vectors along

45

curves such that the vector does not twist as it travels along the curve. In the

discrete piecewise linear case, parallel transport Pb
a (w) of the vector w from a to

b reduces to a rotation around the cross product of a and b (or binormal of the

curve). More simply, if wTa = 0, then Pb
a (w) is the vector which is the smallest

rotation of w around a× b such that Pb
a (w)Tb = 0.

In Bergou et al. [9], the Bishop frame at the beginning of the rod is parallel

transported through time at each step (i.e. from e0(t) to e0(t + h)), and the re-

maining frames are generated by parallel-transporting that first frame through

space along the rod. However, for nonisotropic or naturally curved rods this

zero-twist frame inherently depends on the global state and so the derivative

of the bending energy at any point in the yarn depends on the position of ev-

ery prior point. Despite this dependence, the derivative of bending energy can

still be computed in O(n) time instead of O(n2). Unfortunately, these recursive

bending energy computations are difficult to parallelize, and very long yarns

(such as in garments) could produce large end-to-end rotations in the reference

frame per timestep which can complicate endpoint orientation constraints.

However, twist-free reference frames were only used to simplify twist-

energy computation—since then the only twisting is due to the material frame.

This restriction can be removed, and instead the reference frame now starts as

a twist-free frame, but every segment’s frame is parallel transported through time

(instead of space) from its previous position. Because there is no more spatial

parallel transport, rod energy computations have local support and are easily

parallelized. The reference frame does accumulate twist, but it can be accounted

for and corrected in the twisting energy computation. This was discovered con-

currently by Bergou et al. [7], which contains an alternative method of deriva-

tion, as well as noting that this local dependence allows for efficient implicit

46

integration.

Each ui at time t + h is now updated by parallel transporting the previous

ui(t) through time (i.e. by parallel transporting ui from the vector ei(t) to ei(t+

h)). The twist from (ui,vi) to (ui+1,vi+1) is denoted as θ̂i+1. This twist can be

computed on each timestep by computing the angle between P ei+1(t+h)

ei(t+h)
(ui) and

ui+1, i.e., the twist between the space-parallel transported ui (which will have

zero twist relative to ui) and ui+1, taking care to handle relative twists greater

than 2π properly.

Given this change, the twisting and bending energies must then be redefined

to include the relative twist in the reference frame. In addition, derivatives for

the energies are needed with respect to both q (for force evaluation) and θ (to

solve for the quasistatic material frame). The modified twisting energy must

simply take into account the twist in the reference frame, and becomes:

Etwist =
n∑
i=1

ktwist
(θi − θi−1 − θ̂i)2

¯̀
i

∂Etwist
∂θi

is straightforward to compute because the twist in the reference frame

does not depend at all on the twist in the material frame, so ∂θ̂j

∂θi
= 0 for all i, j.

However, the twist in the reference frame does depend on the position of the

centerline, and so ∂Etwist
∂qi

becomes:

∂Etwist

∂qi
=

n∑
j=0

∂Etwist

∂θj
∂θj

∂qi
+
∂Etwist

∂θ̂j
∂θ̂j

∂qi

where ∂θj

∂qi
= 0 for all i, j because each frame is independently parallel trans-

ported through time in a twist-free manner; ∂θ̂j

∂qi
is not necessarily zero since θ̂j

measures the twist in the reference frame and so changes with P ei+1(t+h)

ei(t+h)
(ui) and

ui+1. However, because ui and ui+1 are updated via parallel transport through

time (i.e. with zero twist), this corresponds precisely to the gradient of holon-

47

omy of P ei+1(t+h)

ei(t+h)
(ui) relative to ui (§6 of [9]), and so:

∂θ̂i

∂qi−1

=
(κb)i
2|ēi−1|

∂θ̂i

∂qi+1

= −(κb)i
2|ēi|

∂θ̂j

∂qi
=

 −
(

∂θ̂i

∂qi−1
+ ∂θ̂i

∂qi+1

)
, i = j

0, otherwise.

where (κb)i is the discrete curvature binormal

(κb)i =
2ei−1 × ei

|ei−1||ei|+ (ei−1)Tei

As for the bending energy, the definition itself does not change from [9], but

its derivatives do. The bending energy is defined as

Ebend =
n∑
i=1

1

2`i

i∑
j=i−1

(ωji − ω̄
j
i)
TBj(ωji − ω̄

j
i), (4.14)

where `i = |ei−1|+|ei|, Bj is the 2×2 symmetric positive definite bending matrix,

ωji =
(
(κb)Ti m

j
2,−(κb)Ti m

j
1

)T
is the material curvature at vertex i with respect to

material frame j, and ω̄ji is the material curvature at rest. ∂Ebend
∂θi

does not change

from its definition in [9], but ∂Ebend
∂qi

becomes much simpler to compute.

Because each ui is parallel transported through time, there is no need to ac-

count for the variation in the Bishop frame. As a result, the gradient of the

material-frame curvature is now

∇iω
j
k =

(
(mj

2)T

−(mj
1)T

)
∇i(κb)k.

Because ∇i(κb)k is nonzero only for k − 1 ≤ i ≤ k + 1, the gradient of the

material-frame curvature is nonzero only for k − 1 ≤ i ≤ k + 1. As a result,

summation when computing ∂Ebend
∂qi

merely needs to occur over the three-vertex

stencil for each bending element:

∂Ebend

∂qi
=

i+1∑
k=i−1

1

`k

k∑
j=k−1

(
∇iω

j
k

)T
Bj
(
ωjk − ω̄

j
k

)
(4.15)

48

4.5.2 Improved Internal Friction Model

Internal Yarn Plasticity

Yarns are not simple elastic materials; rather, they display a complex set of dy-

namics driven by fiber interactions, which include significant plastic behavior

under deformation. This can be approximated using a simple plasticity model

on the rest state of the rod in angular space. In Discrete Elastic Rods, this rest

state ω̄ij is the product of the curvature binormal at a given bending element

qj (vertex) with the material frame of a neighboring segment, so ω̄ij ∈ IR2 and

can be represented as a 2D point. If this point lies outside the circle of radius

pplastic centered at the current state ωij of that pair, the rest state is projected onto

the boundary of the circle. Similarly, if the rest state falls outside the circle of

radius pmax
plastic centered at the origin, it is projected onto the boundary of that

circle; this approximates the fact that there is some maximum angle at which

the compression of the material overwhelms the frictional forces. This model

is easy to evaluate while still allowing for permament deformations of the rest

state within some allowable angular range at each bending element.

Nonrigid Damping

As discussed in §4.2.3, fiber interactions and entanglements are important for

capturing the overall motion of cloth, but they are difficult to model explicitly.

The nonrigid damping in §4.2.3 works well at plausibly damping out the over-

all motion, but it has some important limitations. Most critically, fiber entan-

glements in real cloth can lead to plastic deformations—for instance, creases or

persistent folds—but the nonrigid damping only subtracts a fixed proportion of

the overall nonrigid motion on each timestep. This means that there is always

some remaining nonrigid motion, which shows up as an undesirable creeping

49

f (t+1) = evaluate forces()

q̇uncons = q̇(t) + hM−1f (t+1)

q̇glue = satisfy glue constr(q(t) + hq̇uncons)

q̇length = satisfy length constr(q(t) + hq̇glue)

q̇damp = nonrigid damping(q̇length)

q̇(t+1) = object contact(q(t) + hq̇damp)

q(t+1) = q(t) + hq̇(t+1)

quasistatic frames()

Figure 4.12: Overview of revised algorithm

behavior towards the energy minimum.

This can be accounted for by allowing the nonrigid damping to remove

a constant (as opposed to proportional) amount of nonrigid velocity at low

speeds. For a given damping region, let k be the number of control points in

the region, and vnonrigid ∈ R3k be the nonrigid velocity of that region. The ap-

plied change to the velocity of all control points in the region is then:

∆ v = −vnonrigid min

(
1,max

(
hµprop,

hµconst
√
k

‖vnonrigid‖2

))
.

Note that this computation is over the 3k-dimensional velocity and not at each

point, to ensure conservation of momentum inside the region1. At low speeds,

rather than removing a proportional amount of nonrigid velocity at each step, a

constant amount is removed, up to the entire nonrigid velocity; this allows the

cloth to come to rest in finite time, which is an approximation of the complex

hysteresis seen in real cloth. Moreover, the simulator now only applies one

phase of nonrigid damping on each timestep, over blocks of 4× 4 knit loops.

50

4.5.3 Reordered Integration

For the explicit integration of the force terms, symplectic Euler is a better choice

than explicit midpoint since it preserves momentums while only requiring one

force evaluation; the additional accuracy of midpoint is typically not of practical

significance given the small timesteps involved in simulation.

Due to the length constraints now being solved over the piecewise linear

discretization, with only length constraints the linear system that needs to be

solved with Fast Projection [39] is tridiagonal and thus easy to solve directly.

However, including glue (or other) constraints as well destroys the tridiago-

nality of the system, and even with the tridiagonal part of the matrix used as a

preconditioner the system requires several PCG iterations to solve. Therefore, to

accelerate the constraint satisfaction process the glue and length constraints are

solved separately, producing simple systems that can be solved directly (diago-

nal and tridiagonal, respectively). Moreover, both damping and object contact

are applied after glue and length constraints to allow the cloth to come to rest;

while this means that the constraints are in principle no longer satisfied exactly

at the end of each timestep, this has not resulted in any observed problems in

practice. Because the glue constraints are solved for first, and are thus most

likely to be violated, additional springs are inserted at the glue points to en-

sure the points stay close enough together to remain glued, but this represents

a negligible overall cost to the simulation. Figure 4.12 lists the complete revised

algorithm, while Table 4.3 lists the common values for the new simulation pa-

rameters.
1If the regions overlap, however, it will not necessarily be momentum conserving. This can

be corrected by computing the total change in momentum of the cloth after applying the filter,
and then correcting for it

51

parameter description value
h timestep 1/24000s
pplastic ; pmax

plastic yarn plasticity 0.01 ; 2.5
µconst ; µprop nonrigid damping 500 ; 1500 – 4500

Table 4.3: Parameters used for revised simulator.

4.5.4 Revised Results

Figure 4.13 shows six frames from the falling scarf simulated using the model

improvements discussed in this section. Note that the scarf is still lively and

readily buckles upon contacting with the floor. However, it still quickly comes

to rest on the ground without any oscillations or further sliding. Comparing the

timings for this example with the timings from Section 4.4 on the same hard-

ware, this simulation takes 6m 52s per frame.

4.6 Conclusions

This chapter demonstrated a robust and scalable technique for simulating knit-

ted cloth at the yarn level that can exploit the parallelism in current multi-core

architectures. The approach allows for significant increases in yarn-level knitted

cloth complexity over previous research, while achieving practical offline simu-

lation rates. Qualitative validation shows that the yarn-based simulation closely

matches observed behavior in actual knit samples and automatically captures

these visually noticeable nonlinear effects that are not in the elastic sheet ap-

proximation. In particular, the model is able to capture the salient mechanical

features of garter, stockinette, and rib knits at rest without any parameter tuning

or special cases—it follows directly from yarn interactions.

Although simulations of moderate complexity proved to be tractable in a

reasonable amount of time, in order to be truly useful the simulator must be

52

(a)

(c)

(e)

(b)

(d)

(f)

Figure 4.13: Six frames from the falling scarf after model improvements of Sec-
tion 4.5

53

able to scale up to character-sized garments, which can contain well over 50,000

knit loops. This order-of-magnitude jump in model size requires additional

speedups in the model simulation in order to stay in the realm of practicality.

However, although there is a high degree of potential complexity in the motion

of knit models, in practice there appears to be a relatively low amount of actual

complexity at any given time. Rather, the geometry evolves relatively slowly,

with many regions of the cloth undergoing little or no deformations at any

given time. This observation will be explored in more detail in the following

two chapters.

54

CHAPTER 5

RIGIDIFICATION

The high degree of complexity in yarn-based cloth models is a limit on the

overall performance, with the bulk of the time spent resolving close contacts

with many degrees of freedom. However, for many simulations some number

of these degrees of freedom may be inactive at any given time. For instance,

cloth laying on the ground at rest is obviously not moving at all, or a skintight

garment may move along with the character’s motion but in some lower dimen-

sional space; here, only a limited range of stretching modes may be exercised as

the material is held in place locally by friction. Unfortunately, the simulator

described in Chapter 4 cannot recognize these regions, and so it is forced to

evaluate the complex yarn behavior—in particular the contact response—at ev-

ery point and on every timestep. As a result, presumably easy cases like cloth

laying at rest require just as much simulation effort as when the cloth is rapidly

deforming, all to determine that it is undergoing some simpler motion instead.

As discussed in Section 3.1.5 there is a wide range of prior work on reduced

models for deformable bodies, which allow for efficient simulation within some

reduced space of allowable motions. Most of these techniques are globally ap-

plied, though, which is challenging for yarn-based cloth since the global space

of current deformation modes may not be small. However, as observed above,

in local regions the space of deformations may be much smaller, and so the

goal is to apply these same ideas of model reduction but at a local level in-

stead. These local models should ideally allow some range of motion in some

lower-dimensional space, but they should not be expected to provide the same

quality of motion as the full yarn model. Rather, the simulator will decide

when and where it is appropriate to substitute these models in and, more im-

55

portantly, when the simple models represent an unacceptable degradation in

quality and the full yarn model should be used instead. The result is a hybrid

simulation, with regions of high motion complexity simulated expensively us-

ing the model in Chapter 4 and regions of low motion complexity simulated

using some cheap-to-evaluate model, and the simulator automatically switch-

ing regions back and forth between the two models as needed to maintain a

specified quality of motion while minimizing computation time.

There are several questions and challenges that need to be addressed, how-

ever. First, what is an adequate low-dimensional and cheap to evaluate model?

This chapter discusses an approach that uses rigid bodies as its simplified

model, discussed in detail in Section 5.1, where local regions of the yarn-based

model are approximated as being rigid. The key benefit of using rigid bodies as

the simplified model is that it prevents any changes in proximity inside the re-

gion and, as a result, the computation of the self-contact force inside the reduced

model can be avoided entirely. Because neighboring sections of the same piece

of cloth may be rigid or not, the integrator must be adapted to properly handle

the interfacing between the two models, as addressed in Section 5.2. Finally, be-

cause approximating the cloth as rigid will obviously greatly reduce the quality

of deformations, how does the simulator decide when it is acceptable to rigid-

ify a region and, most crucially, determine when to derigidify a given region to

maintain the overall quality of motion? Section 5.3 discusses the most successful

attempts at solving the difficult problem of when to switch back and forth be-

tween the two models. Section 5.4 shows some results for the new simulator, in

particular cases where the model fails to adequately respond to changes in ap-

plied force in time to avoid significant degradation in motion. Finally, Section

5.5 discusses the underlying problems and lessons learned from this approach

56

that make it so challenging to adequately solve and lays the groundwork for the

ultimately more successful methods of Chapter 6.

5.1 Rigidification Model

The cloth is broken up into a hierarchy of rigid zones, each of which may or

may not be rigidified at any moment in time, with each zone containing some

set of control points. When a given zone Zk is rigidified, all control points in

that zone now evolve through time rigidly, using the rigid body equations of

motion. Note that since the zones are arranged in a hierarchy, Zk has a parent

parent(Zk), and may also have some number of child zones child(Zk) as well;

each child zone Zc ∈ child(Zk) must be a strict subset of Zk, so Zc ⊂ Zk, and

Zk must itself be a strict subset of parent(Zk) if it exists. Because some control

points in zone Zk may also be in child zones of Zk while others are not, it will be

helpful to distinguish the control points Z local
k which are rooted at Zk (i.e. are in

Zk but not any child zones of Zk). It is a necessary but not sufficient condition

for a zone to be rigidified if all of its children zones are already rigid; further

restrictions on the ability of a zone to be rigidified will be discussed in Section

5.3.

Rigidity represents a severe reduction in the number of degrees of freedom

in the simulation at a local level. Because of this, if two rigidified zones are

too topologically close to each other, there may not be enough remaining de-

grees of freedom between the two zones to allow them to move independently

from each other, and the two zones will be effectively rigidly coupled. This has

the effect of introducing additional, unintended locking behavior in the simula-

tion, which should be avoided. As a result, a buffer of free control points is left

around each Zk and not included in any other rigid zone at that level in the rigid

57

zone hierarchy; they may be included in ancestor zones of Zk in the hierarchy,

however.

Section 5.1.2 contains a more detailed discussion on how rigid zones are

formed and grouped. See Figure 5.1 for an example of a hierarchy of rigid zones

along with buffer regions.

5.1.1 Rigid Zone Dynamics

In order to simulate a zone rigidly, the dynamics of a rigid body must be speci-

fied. This is a well-understood problem, and there are many additional sources

of information which can be consulted in addition to this section [40, 34].

When a zone is rigidified, the necessary rigid body properties are computed

from the control points. This includes the total mass MZk , center of mass xZk ,

velocity vZk , angular momentum LZk , and inertia tensor IZk :

MZk =
∑
i∈Zk

mi

xZk =
1

MZk

∑
i∈Zk

miqi

vZk =
1

MZk

∑
i∈Zk

miq̇i

LZk =
∑
i∈Zk

midi × q̇i

IZk =
∑
i∈Zk

mi

(
d2
iE3×3 − did

T
i

)
where mi is the mass of control point i, qi and q̇i are its position and velocity,

respectively, and di = qi − xZk . To distinguish between the identity matrix and

the inertia tensor, E will be used in the remainder of this chapter to denote the

identity matrix. The initial rotation RZk of the zone is set to the identity matrix.

58

For numerical robustness it may be desirable to represent the rotation instead as

a unit quaternion, denoted as rZk ; the remainder of this chapter will use either

RZk or rZk depending on convenience. Each of these quantities is defined as a

loop over all control points, but if they are already known for the child zones of

Zk then they can be computed much faster as a loop over the child zones as well

as the control points in Z local
k :

MZk =
∑
i∈Z local

k

mi +
∑

Zc∈child(Zk)

MZc (5.1)

xZk =
1

MZk

 ∑
i∈Z local

k

miqi +
∑

Zc∈child(Zk)

MZcxZc

 (5.2)

vZk =
1

MZk

 ∑
i∈Z local

k

miq̇i +
∑

Zc∈child(Zk)

MZcvZc

 (5.3)

LZk =
∑
i∈Z local

k

midi × q̇i +
∑

Zc∈child(Zk)

(LZc +MZcdZc × vZc) (5.4)

IZk =
∑
i∈Z local

k

mi

(
d2
iE3×3 − did

T
i

)
+ (5.5)

∑
Zc∈child(Zk)

(
RZcIZcR

T
Zc +MZc

(
d2
ZcE3×3 − dZcd

T
Zc

))
(5.6)

where dZc = xZc − xZk . For zones where |Z local
k | � |Zk| this represents a sub-

stantial savings; because zones are only rigidified when all of their children are

already rigid, these quantities are always guaranteed to be known.

Given these quantities, the equations of motion for a rigid zone follow di-

rectly from the dynamics of a rigid body:

59

ẍZk = v̇Zk =
1

MZk

∑
i∈Zk

fi (5.7)

L̇Zk =
∑
i∈Zk

di × fi (5.8)

ṙZk =
1

2
[0; RI−1

Zk
RTLZk]rZk =

1

2
[0;ωZk]rZk (5.9)

where fi is the applied force to control point iNote that the rotation is integrated

using quaternions, allowing for easy renormalization after each timestep, and

that ωZk is treated as a purely imaginary quaternion during multiplication.

Once zoneZk is rigidified, the rigid body variables become the active simula-

tion variables, and the position and velocity of the now-rigidified control points

in Zk become dependent on these variables. The positions of rigidified control

points are typically computed on an as-needed basis by the simulator; however,

due to the design of the yarn model there are some which are always needed,

which are grouped into the set Zboundary
k ⊂ Zk and which are always kept up-to-

date. The contents and purpose of this set will be discussed in Section 5.2.1.

5.1.2 Defining Rigid Zones

There are obviously many issues to consider when defining the sets of rigid

zones and their hierarchical grouping. For starters, the zones can either be de-

fined statically, i.e. fixed at the beginning of simulation, or dynamically, i.e.

time-varying during the course of simulation. Static zone generation is simpler

to implement, but it can fail to achieve maximum performance if the motion

of the cloth contains a rigid region in the cloth that crosses through but does

not entirely contain several statically defined rigid zones. In contrast, dynami-

cally defined zones can in theory capture arbitrary sets and subsets of rigidity

60

Level 1 Level 2 Level 3

seam local
points

all
points

rigid zone

Figure 5.1: Hierarchy of zones in a simple knit

in the cloth, by defining and redefining zones which precisely encompass only

the rigidly deforming regions; however, this introduces additional complexity

as the simulator must now also create and refine these zones over time, presum-

ably using some clustering or matching criteria. Because of this complexity, the

rest of this chapter assumes a static set of rigid zones.

Given these static zones, there are several additional issues that need to be

addressed—the size of the smallest level of rigid zone, how they are grouped

to form larger zones, and how to prevent locking behavior when neighboring

zones are rigidified. The simulator presented in this chapter creates zones out of

3× 3 blocks of knit yarn loops, and creates larger rigid zones out of 2× 2 blocks

of neighboring rigid zones (if there are an odd number of zones at any given

level, some zones created on the next level will have either/both 3 rows and 3

columns). Finally, as noted earlier, rigid zones have severely reduced dynamics,

and it is important to reduce the chance of locking behavior by removing too

many degrees of freedom. As a result, a buffer of one yarn loop is kept between

the rigid zones at any given level; as the hierarchy of zones is traversed upward,

buffer loops which are entirely internal to a rigid zone are rigidified along with

the zone. See Figure 5.1 for a diagram of the zone generation procedure.

61

For each timestep, h
update rigidity state()
[qn, q̇n] = integrate dynamics(q0, q̇0)
Evaluate impulses, determine which zones

should be broken on next timestep
end

Figure 5.2: Overview of rigid-cloth simulator

5.2 Modifications to Integrator

As seen in Figure 5.2, the algorithm can be broken down into three steps. Be-

fore the step is taken, the current rigidity state is updated, with zones rigid-

ified or derigidified according to the oracle in Section 5.3. The dynamics are

then integrated, producing a new position and velocity for the system. Given

this new state, the zones are further evaluated to determine whether any im-

pulses over the timestep should result in zones being derigidified, before the

step is finished and the next one is started; this is discussed in Section 5.3.3.

The remainder of this section discusses the necessary modifications to the

integrate dynamics() step.

Although both the yarn and the rigidified zones have well-defined equations

of motion and methods of integration, because they are interrelated it is neces-

sary to integrate both models forward in time simultaneously. This leads to sev-

eral modifications to the basic integrator in order to efficiently support simul-

taneous integration and ensure that rigid zones represent a sufficient speedup.

The goal is to take advantage of the hierarchy of rigid zones in order to avoid

looping over all points in all rigid zones. Rather, the integrator should avoid

computing unnecessary quantities and instead try and use aggregate quantities

to make computation proportional to |Z local
k | and |child(Zk)|, instead of |Zk|.

62

5.2.1 Force Computation

In principle, since the rigid body equations of motion (5.7), (5.8), and (5.9) are

expressed as summations over the forces on control points, integrating the rigid-

ified zones requires merely computing the force on all control points as before

and then summing accordingly. However, many of these force computations

are either no longer necessary or can be simplified inside the rigid zones. Note

that all of these represent exact aggregate values for the zones; only computa-

tions which can have no effect on the motion of the rigid zone are discarded.

Depending on the type of force, this is accomplished in one of several ways; in

the following discussion, assume zone Zk has been previously rigidified, and

without loss of generality assume the yarn model consists of a single yarn.

Gravity and damping

Gravity of acceleration g on control points in Zk can be applied as a single

force of magnitude MZkg directly at the center of mass of the rigidified zone,

while mass-proportional damping over all control points can be computed as a

force −kdvZk applied at the center of mass and a change of angular momentum

−kdLZk .

Bending / Twisting

For any internal rod dynamics like bending, twisting, or self-contact, if all of

the affected control points lie in the same rigidified zone then they cannot influ-

ence the final motion of the zone; because all of them are pairwise equal-and-

opposite forces, they are conservative forces and so produce net zero torque

and force. As a result, forces entirely internal to a rigidified zone can be safely

skipped; the problem is efficiently determining when this is the case.

63

The set of zones which have been rigidified induce a natural partitioning

of the yarn into a set of intervals, where the intervals alternate between being

rigid and being nonrigid. Moreover, because rigid zones are either strict su-

persets or do not intersect, and there are buffers between zones, any points in

a given rigid interval must be in the same rigid zone. Thus, for bending and

twisting elements, any force computation entirely inside a rigid interval can be

avoided. Define the set Y = {(i, j)} to be the set of nonrigid intervals, where

for each interval (i, j) control points i and j are rigid (or the beginning/end of

the yarn), and all control points between i and j are not rigid. Figure 5.3 con-

tains an example of several rigidified zones and the corresponding set Y . Given

this set, computing only the necessary bending / twisting / gravity / damping

forces on nonrigid control points becomes a simple loop over the intervals in Y .

Note that each force must loop over the elements slightly differently; given an

interval (i, j) where i ∈ Zk, the gravitational/damping force needs to be com-

puted on all control points excluding i and j, since the force on those points is

generated by the rigid body forces from above. However, the bending/twisting

forces need to include the force generated by the three-control-point bending el-

ements centered at both i and j. Because at i this three-element stencil includes

two rigid control points (i−1 and i), the positions qi−1 and qi are always needed

to compute the bending/twisting force at qi; as a result, both i− 1 and i are in-

cluded in the set Zboundary
k . A similar argument holds when j ∈ Zk. The set Y can

be quickly computed, and only needs to be updated when the set of rigidified

zones changes.

64

a b

d

fe

c

Y = {..., (a,b), (c,d), (e,f), ...}

Figure 5.3: Example of intervals between rigidified zones

Yarn Collisions

Unfortunately, the interval set Y is not directly useful for accelerating the yarn-

yarn contact computation, since there may be arbitrary collision complexity in-

volving any yarn point (rigid or non-rigid) and any other yarn point (rigid or

non-rigid) or object, regardless of whether the point is within Z
boundary
k or not.

Moreover, only the collisions entirely internal to Zk can be ignored; contacts

between rigid points in Zk and nonrigid points, or Zk and another rigidified

zone Zk′ must still be processed. Despite these restrictions, these entirely inter-

nal self-contacts represent a significant performance cost, and efficiently culling

them out represents the bulk of the possible speedups due to rigidification.

As in Chapter 4, a bounding volume hierarchy (BVH) is used to detect yarn-

yarn collisions, with spheres instead of axis-aligned bounding boxes. However,

the hierarchy is constructed in a specific way, based upon the construction of

the rigid zones in Section 5.1.2. Since the curve is a Catmull-Rom spline, every

quadrature point in the BVH depends on the positions of at most four control

points. For zone Zk, if a quadrature point depends only on control points in Zk,

it will transform rigidly with the zone when Zk is rigidified. Because of this, the

65

BVH is constructed such that all of the quadrature points depending only on

ZK are rooted in a subtree of the BVH, the root of which is denoted as node nZk .

When Zk is rigidified, nZk is flagged as not needing internal collision process-

ing. Subsequent traversals of the hierarchy to find collisions then can safely skip

processing collisions internal to nZk , which is detected as checking for collisions

between nZk and itself. Moreover, because spheres are used instead of bound-

ing boxes, subtrees consisting only of rigidified quadrature points in Zk will also

transform rigidly. As a result, the subtree at nZk does not need rebounding be-

fore collision processing, and the current positions of any node below nZk in the

tree are not computed in advance but are instead transformed on-demand by

the same rigid transformations being applied to Zk whenever they are needed

to find cross-zone collisions.

Due to this efficiency, all object collisions are handled in a similar way, using

the same collision hierarchy as for yarn-yarn collisions and testing each sphere

for intersection with all objects in the scene. Because the collision hierarchy

is also used for yarn-yarn collisions, it contains several quadrature points per

segment, but cloth-object collisions can be much coarser. As a result, for object

collision only the spheres corresponding to the vertices of the discrete yarn need

to be checked for collisions. In addition, in order to avoid updating the tree

multiple times per timestep, all object collisions are treated using a penalty force

model, which allows the object contact response to be computed at the same

time as yarn self-collisions (and, in fact, share the work of updating the collision

tree as needed).

66

5.2.2 Non-Rigid Damping

Non-rigid damping is treated much as in Section 4.2.3, with the caveat that these

damping regions are distinct from the set of rigid zones, and so a damping re-

gion may contain parts of one or more rigid zones, each of which may or may

not be rigid; this adds complications to the overall computation, but it can still

be computed as an applied change to the velocity and angular momentum of a

rigidified zone Zk. There are two speedups to be observed here, though. One

is that a damping region entirely internal to a single rigid zone can be safely

skipped, since by definition there is no non-rigid motion inside a rigidified zone.

The second is that computing the damping requires the same rigid body quan-

tities as the rigid zone, but only for the set of control points in the rigid zone that

overlap the damping region.

The simplest approach for computing these quantities explicitly computes

them by looping over each control point and generating its position. This is inef-

ficient, though, since it may require looping over a significant fraction of control

points deep in the rigid zone hierarchy, which each require multiple transfor-

mations in order to correctly compute their position in world space. However,

the necessary quantities can be transformed and aggregated with the rigid zone

hierarchy as zones are rigidified, since both the damping sets and the rigid sets

are static so every possible overlap is known in advance. The end result is that

each rigid zone maintains the necessary rigid body quantities for all subsets

of overlapping damping regions, which are computed upon rigidification from

the same quantities stored in the damping region subsets of child zones. While

doable, this represents a significant bookkeeping challenge, and since the non-

rigid damping is itself an approximation of cloth behavior, it is unclear that it

needs to be computed exactly. Rather, a compromise approach applies damp-

67

ing to each region as usual, but if a damping region overlaps a rigidified zone

then the entire rigid zone is included in the damping region rather than just the

overlapping part. This means that the applied damping will change depending

on the current state of rigidification; however, it also makes its computation sig-

nificantly more efficient and easier since the rigid body variables of the entire

zone can be used directly and no bookkeeping is required to keep track of the

variables for just the overlapping pieces. In practice, no significant difference in

the overall motion was observed with this simplification.

5.2.3 Constraints

Much like internal forces, length constraints entirely inside a rigidified zone Zk

do not need to be enforced; in fact, including them in the constraint solve of Fast

Projection produces a rank-deficient matrix since there are no available degrees

of freedom along the constraint direction. These constraints can be filtered out

efficiently using the same non-rigid interval set Y from Section 5.2.1.

The main complexity lies in handling the coupled constraints, where one

control point of a length constraint is in a rigidified zone while the other is

not. The position of the control point which is rigidified is dependent on the

rigid body variables for the zone, and so the constraint solver must ultimately

find acceptable values for the rigid body variables which satisfy all length con-

straints connected to the zone. This problem was addressed in the rigid body

and rod coupling described in Bergou et al. [9], which like the constraint solver

discussed in Section 4.3.1 uses the Fast Projection method introduced by Gold-

enthal et al. [39]. The rest of this section presents a rederivation of this approach

that lends itself well to a simulator which allows rapid and simple rigidification

/ derigification of zones.

68

Without loss of generality, assume there is a single rigidified zone Z0, and

drop the subscripts associated with the rigid zones. This single rigid zone has

a proposed position x and rotation r, total mass M , and reference frame inertia

tensor I. Let there be n control points in the yarn, relabeled such that control

points 0 . . . b − 1 are in Z0, and b . . . n − 1 are not held rigid. Define qnonrigid =

[qb . . .qn−1], Mnonrigid = diag(mb . . .mn−1), and q̄ = [r; x; qnonrigid]. The problem

of constraint satisfaction is then to compute the minimal update (with respect to

the metric derived from the kinetic energy of the system) to the positions of all

nonrigid control points and the position and rotation of the rigid zone Z0 such

that all constraints are satisfied within a specified tolerance.

The kinetic energy of the system is:

(r−1ωr)T I(r−1ωr) +M ẋT ẋ + q̇TnonrigidMnonrigidq̇nonrigid. (5.10)

Note that the angular velocity ω is transformed by the inverse of the current

rotation r to move it into the reference space of the inertia tensor. Since ṙ =

0.5ωr, this can be rewriten as r−1ωr = 2r−1ṙ, producing the same ‘generalized

velocity’ y = [r−1ṙ, ẋ, q̇nonrigid] from Bergou et al. [9], allowing the kinetic energy

to be expressed in matrix form as

[
(r−1ṙ)T ẋT q̇Tnonrigid

]
4I 0 0

0 ME3×3 0

0 0 Mnonrigid




r−1ṙ

ẋ

q̇nonrigid

 ≡ yTMy (5.11)

Given this, it is a matter of simply re-applying the derivation of Fast Projec-

tion from Goldenthal et al. [39], which results in a pair of equations:

0 = Myj+1 + hAT∇C(q̄j)Tλj+1

0 = C(q̄j) + h∇C(q̄j)Ayj+1

69

where superscripts denote the iteration of the Fast Projection algorithm, A =[
Q 0
0 En−b+3×n−b+3

]
, and Q is the 4 × 3 matrix that multiplies a purely imaginary

quaternion by the quaternion rj . Solving for yj+1 in the first equation and sub-

stituting into the second gives the following three equations:

C(q̄j) = h2
(
∇C(q̄j)AM−1AT∇C(q̄j)T

)
λj+1 (5.12)

yj+1 = −hM−1AT∇C(q̄j)Tλj+1 (5.13)

q̄j+1 = q̄j + hAyj+1 (5.14)

To solve for the new projected positions, the first equation is solved for λj+1,

which involves a linear solve of an SPD system, with that solution substituted

into the second equation to solve for yj+1, which is substituted into the third

equation to obtain the updated q̄j+1. Also, note that the constraint gradient

∇C(q̄j) is with respect to q̄j . Via the chain rule, this can be broken up into two

gradients so that∇C(q̄j) = ∇Cq∇P(r,x,qnonrigid), where the function P() describes

the position of each yarn point with respect to the variables r,x,qnonrigid:

pi = x + rdir
−1 for i = 0 . . . b− 1

pi = qi for i = b . . . n

Define

F =



0.5Rj[d1] E3×3 0 0 . . . 0

0.5Rj[d2] E3×3 0 0 . . . 0

...
...

...
...

0.5Rj[dm] E3×3 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . . . 0

...
...

...
...

0 0 0 0 . . . 1



70

where [di] is the 3 × 3 matrix such that [di]b = di × b for all vectors b. Define

M̃−1 = FM−1FT . It can be shown symbolically that ∇PAM−1AT∇PT = M̃−1,

and so 5.12 can be rewritten as:

C(qj) = h2
(
∇C(qj)M̃−1∇C(qj)T

)
λj+1. (5.15)

Note that this is expressed over the set of all control points q, and not the re-

duced rigid state q̄. As a result, solving for the constraints on the yarn involves

two simple steps. The solver first ignores any constraint entirely within a rigid

zone. For the remaining constraints, the solver merely needs to compute the

derivative of each constraint with respect to each control point, regardless of

whether the control point is held rigid or not. If that point is moving rigidly

in some zone, it will then be further filtered by M̃−1 to account for the rigidity.

Thus, the simulator can quickly enable and disable rigidity in zones by chang-

ing the filtering properties of M̃−1 which is trivial since the filtering is controlled

by the matrix F.

This method does have one notable limitation as currently derived: there

is no penalizing of modes which cause the rotation quaternion to stretch. As

a result, the update may cause the quaternion to deviate from unit-norm over

time. However, the update to r will always be orthogonal to r, which is the

first order approximation of maintaining unit-norm. As a result, while r will in

general not be unit length after the update, because the simulator timesteps are

so small in practice the deviation from unit-norm is small per iteration, and the

quaternion can simply be normalized after each iteration. This is not entirely

physically accurate, though, and a more complete implementation with larger

timesteps might need to correct for this. For instance, the actual implementa-

tion of [9] uses a 4 × 4 matrix for the rotational component of the mass matrix,

[1 0
0 I], and Q in A is the 4 × 4 matrix that multiplies a (not necessarily purely

71

imaginary) quaternion by the quaternion r−1. Furthermore, an additional con-

straint is added to the system which ensures that r remains unit length. This

necessitates adding in an additional constraint per-rigid zone to the solve, and

also eliminates the simple re-expression of the rigid body constraints as a filter

on the mass matrix since this constraint cannot be expressed as being applied

to q. Moreover, in practice using just the mass-matrix filter without this addi-

tional constraint sees convergence of the constraints to a tolerance of 10−5 in 1 -

2 iterations per timestep.

5.3 Rigidification Oracles

So far, it has been assumed that the set of rigidified zones is already known to

the simulator. In practice, however, the simulator must update this set of rigid

zones over time, a task assigned to an oracle which, given the current configu-

ration of the simulator, rigidifies or derigidifies zones as necessary to maintain

quality as specified by some user-supplied parameters. In addition, this oracle

should have a number of additional properties. Because the simulation does not

rewind, the oracle should quickly respond to changes in applied loads. More-

over, due to the large number of timesteps it should be relatively inexpensive to

run. Finally, it should also take advantage of the rigid hierarchy and not require

traversing all the way down to the leaves to verify rigidity for an ancestor.

All of the tested oracles define the set of currently rigid zones as a cut

through the hierarchy of zones, with the zones on the cut predicted to be rigid

and all zones below the cut rigidifed and all above non-rigid. The zones on the

cut are zones that are predicted to be rigid, but they will not be simulated as

actually rigid. Rather, simulating them as nonrigid gives the oracle valuable in-

formation about its prediction and allows it to detect when the prediction is no

72

longer valid. In addition, the oracle enforces a maximum one-level difference in

the current set of rigid nodes in the hierarchy; this allows changes detected at

one node to rapidly propagate in a local region around the change.

5.3.1 Rigidification

Detecting that a zone can be rigidified is significantly easier than detecting when

a rigidified zone needs to be derigidified. This is done by computing a simple

rigidity metric on zones that measures deviations from rigidity with respect to

a reference configuration, which is updated over time. Zone Zk is checked for

rigidity if all of its children are predicted to be rigid and it can rigidify based on

the maximum one-level difference. Checking for rigidity involves storing a ref-

erence configuration for Zk, which consists of the positions of all points in Z local
k

and the positions and rotations of all zones in child(Zk), and then evaluating

the rigidity metric hrigid simulation seconds later; if it is less than a user-defined

tolerance τrigid, Zk is rigidified and the cut is collapsed to the parent zone. If Zk

is not moving rigidly, the reference configuration is set to be the current config-

uration, and the rigidity is again estimated after hrigid seconds.

In order to compute the rigidity of Zk, shape matching is used to estimate the

best rigid transformation of the zone [77, 95]. For each point i ∈ Zk, there is a

reference position q0
i and current position qi. In order to efficiently compute this

transformation it should take advantage of the rigid hierarchy—if Zk contains a

child rigid zone Zc, the best rigid transformation should be computed without

directly examining the points inside Zc. Rather, it should be computed using

easily precomputed aggregate quantities over Zc as well as the points in Z local
k .

As shown in the remainder of this section, this is done by substituting in the

rigid position for all points in Zc and reordering summations to compute over

73

the rigid body variables of Zc.

The two best translations are just the center of mass of the set of points in

both the initial and final positions, which can be easily computed using the cen-

ter of mass equation (5.2) for both the reference configuration and the current

configuration, giving x0
Zk

and xZk respectively.

The best rotation is found by computing the polar decomposition of the ma-

trix [77]:

AZk =
∑
i∈Zk

mi(qi − xZk)(q
0
i − x0

Zk
)T . (5.16)

Expanding this summation to separate points in Z local
k from points in child

zones of Zk gives:

AZk =
∑
i∈Z local

k

mi(qi − xZk)(q
0
i − x0

Zk
)T+

∑
Zc∈child(Zk)

∑
j∈Zc

mj(qj − xZk)(q
0
j − x0

Zk
)T

=
∑
i∈Z local

k

mi(qi − xZk)(q
0
i − x0

Zk
)T +

∑
Zc∈child(Zk)

A′Zc ,

(5.17)

Let Zc be a child rigid zone of Zk (which must be moving rigidly if the rigid-

ity of Zk is being checked). Then the positions of all control points in Zc can

be expressed in terms of the rigid body variables instead. Thus, for j ∈ Zc, if

dj is the relative position of control point j in Zc, then q0
j = R0

Zc
dj + x0

Zc
and

qj = RZcdj + xCk , which, when substituted into A′Zc from Equation (5.17), al-

74

lows A′Zc to be re-expressed as:

A′Zc =
∑
j∈Zc

RZc(mjdjd
T
j)(R0

Zc)
T

+
∑
j∈Zc

RZcmjdj(x
0
Zc − x0

Zk
)T

+
∑
j∈Zc

(xZc − xZk)mjd
T
j (R0

Ck
)T

+
∑
j∈Zc

mj(xZc − xZk)(x
0
Zc − x0

Zk
)T

A′Zc = RZc

∑
j∈Zc

(mjdjd
T
j)(R0

Zc)
T +MZc(xZc − xZk)(x

0
Zc − x0

Zk
)T

(5.18)

Note that the middle two terms in the expansion are zero because by defini-

tion
∑
mjdj = 0. Note also that this requires storing the mass-weighted sum of

the outer product of the relative position of all points in the zone relative to the

center of mass of the zone
∑
j∈Zc

(mjdjd
T
j); fortunately, this quantity can also be

computed and stored recursively per-zone. Given this, the matrix AZk can then

be formed as the sum of all A′Zc for child zones as well as additional non-child

points in Z local
k , without descending further down the hierarchy of zones.

Given the best translations x0
Zk

and xZk , and the best rotation RZk , it is then

necessary to compute the deviation from rigidity over the specified time period.

An efficient metric for doing so is:

rigidity(Zk) =
1

WZkhrigid

√∑
mi‖RZk(q

0
i − x0

Zk
) + xZk − qi‖22

MZk

, (5.19)

where WZk is a weight, with units of distance, measuring the size of zone Zk;

in the implementation, this is taken to be the radius of the collision hierarchy

bounding sphere nZk . This can be interpreted as measuring the average non-

rigid velocity of each point inside Zk over time time hrigid, but it is particularly

efficient because much like AZk it can be computed over aggregate quantities

75

on the child zones and Z local
k instead of requiring a full loop over Zk. The deriva-

tion of the expansion is computed in the same way as AZk , via substitution of

the rigid body positions of qi for all points inside child zones Zc, but it is not as

simple as AZk . Code for computing it efficiently can be generated using a sym-

bolic toolkit, e.g. Maple or Mathematica, and it only requires storing the same

aggregate quantities (outer product sum) as AZk . After evaluating this metric,

if rigidity(Zk) < τrigid, then the zone is marked as rigid and the cut through the

hierarchy of rigid zones is updated to reflect the change.

This gives us a simple to evaluate metric for determining the rigidity of a

given zone as measured from some reference configuration. It meets the goals

stated at the beginning of the section, in that it depends only on control points in

Z local
k , rigid body variables of zones in child(Zk), and easily computable aggre-

gate quantities over zones in child(Zk) that can be computed and stored when

the zone is rigidified. Moreover, as the next section shows, it also provides a

method for detecting when to derigidify a zone.

5.3.2 Basic Derigidifier

The metric in equation (5.19) can also be used for derigidification. The key idea

is that the rigid zones on the cut are predicted to be rigid, but they do not nec-

essarily have to be simulated rigidly, and in fact simulating them nonrigidly can

give the simulator valuable information on how accurate its predictions are.

Suppose zone Zk has been determined to be rigid and is now on the current cut

of active rigid zones. Zk will not be simulated rigidly, however. Instead, when

Zk is determined to be transforming rigidly, the current configuration of Zk is

stored as the reference configuration, and on every timestep the metric in equa-

tion (5.19) is evaluated. Because the current configuration is never updated,

76

there is no need to scale for time, and so the scale factor of 1
hrigid

is removed. As

a result, the metric is measuring the total deviation from rigidity since Zk was

rigidified, and not the average rate of rigidity change, as was being measured

in Section 5.3.1. Once this metric goes above τnonrigid, Zk is no longer predicted

to be rigid, the cut of active rigid zones is expanded to include the children of

Zk, and the children of Zk are now derigidified (since they are now on the active

cut, they are now only predicted to be rigid).

It is worth expanding on the reasons for why the reference configuration is

fixed at the time of rigidification. If instead the reference configuration for zone

Zk is regularly updated while it is predicted to be rigid, then this measures the

rate of change of rigidity over time; once the zone begins deforming at a rate

faster than τnonrigid, the zone is no longer treated as rigid. Because this will not

break rigid zones under slow but constant nonrigid deformation, it is better to

instead fix the reference configuration at the time Zk is determined to be moving

rigidly, and remove the scale factor of time from the metric. This will then cause

zones to break once they undergo some total amount of nonrigid deformation,

regardless of the period of time over which it occurs, and in general functions

better for preserving the quality of the final results.

5.3.3 Impulse Derigidifier

The above rigidifier/derigidifier works well for detecting slow changes in the

rigid state that are occurring over a length of time. However, it does not do

as well for rapid and unpredictable changes in the rigid state, such as those

caused by object collisions. The predictor works by analyzing the difference

in the motion of two levels of the hierarchy, but if those two levels are high

up in the hierarchy then they both may be equally bad at capturing the true

77

Two levels in rigid simulation Unreduced simulation result

Figure 5.4: Failure case for rigid predictor

nonrigid behavior. In particular, if the bulk of the cloth is rigidified, some object

impulses may not cause sufficient nonrigid deformation in time to derigidify

before the quality of the simulation degrades significantly. One notable and

common case is cloth rigidified into a planar sheet and an in-plane impulse

force, where the correct buckling behavior occurs entirely inside a rigidified

zone and is not detected. Figure 5.4 illustrates how this is missed by the two-

level predictor, while Figure 5.5 contains six frames of a falling scarf where this

behavior occurs. The scarf quickly rigidifies (shown in red) to the top hierarchy

level, while the object contact generates a force in the plane of the scarf. While

the scarf would normally buckle in the absence of rigidification, here the scarf

does not undergo sufficient nonrigid movement to derigidify, and as a result

the scarf instead topples sideways like a solid beam rather than a soft piece of

fabric.

Ultimately, detecting these failure cases is extremely difficult, in particular

since they arise largely as a result of certain contacts and collisions which are dif-

ficult to anticipate. Many different approaches were tested, with none of them

completely addressing the problem. The most successful of these approaches

78

(a)

(d) (e) (f)

(b) (c)

Figure 5.5: Falling scarf without impulse derigidification

was the impulse derigidifier. At a high level, for each zone Zk on the cut of

active rigid zones the impulse derigidifier measures the deviation of each point

j ∈ Zk from the expected position of the point if the model had been simulated

as if no zones were rigid in the simulator.

More formally, let Zk be some zone in the active rigid cut, and j ∈ Zk be

arbitrary. At the start of the timestep, control point j has starting position q0
j

and velocity q̇0
j = v0

Zk
+ω0

Zk
×R0

Zk
dj , and at the end of the timestep new position

qnj = q0
j+hq̇

n
j and velocity q̇nj = vnZk+ωnZk×Rn

Zk
dj . Over the timestep, there have

also been forces and impulses, both internally and externally generated, applied

at control point j which induced acceleration or torque on zone Zk; these are

accumulated into the total change in velocity ∆q̇j . Thus, if control point j were

not held rigid, the expected new position would have been qfj = q0
j+h(q̇0

j+∆q̇j).

79

The deviation from rigidity over the timestep for control point j is then:

nj =
1

h

(
qfj − qnj

)
(5.20)

= v0
Zk

+ ω0
Zk
×R0

Zk
dj + ∆q̇j −

(
vnZk + ωnZk ×Rn

Zk
dj
)

(5.21)

and the associated metric over the entire zone Zk is

vel rigidity(Zk) =
1

WZk

√√√√ ∑
j∈Zk

mj‖nj‖22

MZk

(5.22)

Essentially, this is measuring the difference in motion caused by the rigidity.

This difference can be manifested in several ways: for instance, how much of the

impulse at point j got thrown away because e.g. it cancelled out with another

impulse at another point, as well as how much final velocity is unaccounted for

because e.g. it was produced by an impulse at another point and got distributed

through the rigid body to point j. If this value crosses a tolerance τvel, the zone

is immediately derigidified at the end of the timestep. Note the similarities to

the rigidity metric (5.19); both measure the difference between expected posi-

tions and actual positions, mass-weighted and scaled over the period of time.

In addition, much like the rigidity metric, the equation can be expanded using

a symbolic toolkit and computed in terms of aggregate quantities, in this case∑
jmj∆q̇jRZkd

T
j ,
∑

jmj∆q̇j , and
∑

jmj∆q̇Tj ∆q̇j . The results of this derigidi-

fier can be seen in Figure 5.6. Note that as the scarf collides with the ground

plane, the zones in the area are immediately derigidified and the cloth begins to

buckle as expected, while zones higher up the cloth remain rigidified.

However, unlike with the rigidity metric, there are important limitations and

drawbacks with (5.22). The first is simply the difficulty of correctly implement-

ing it: carefully accounting for all impulses on all control points in the simu-

lation is challenging, and any missed impulses induce significant errors in the

final computation. Note also that the impulse must be as if the zone were not

80

Figure 5.6: Falling scarf with impulse derigidification

being simulated rigidly, which means it must include those forces discussed in

Section 5.2 which did not need to be explicitly computed for the rigid zone be-

cause they contributed net zero force to the rigid zone. Because these forces

rigidly transform with the zone, they can be computed when the zone is rigid-

ified, but there is still the problem of correctly accounting for impulses (like

object contact friction) which depend on other impulses which may or may not

be normally included depending on rigidity. All in all, it represents a significant

and difficult engineering challenge to simply get near to a correct computation.

More importantly, this estimator is evaluated on every timestep, since it

needs to quickly respond to changes in applied loads. While this is good for

rapid response, it also means that this is a rather noisy estimator, and tuning

parameters such that it adequately responds while not overreacting and ag-

gressively derigidifying zones is difficult. Finally, although the estimator can

be computed using aggregate quantities, in a typically structured integrator it

is difficult to compute
∑

jmj∆q̇Tj ∆q̇j as a running sum, since the applied im-

pulse to a given control point is usually computed as a series of impulses, and

computing the mass-weighted sum of squared impulses without looping over

all control points in Zk is problematic. In the current implementation, this loop

81

parameter description value
τrigid rigidification tolerance 1.5 – 10 1

s

τnonrigid derigidification tolerance 0.002 – 0.013
τvel velocity impulse tolerance 10 1

s

hrigid rigid test frequency 10h
h timestep 1/24000s
b quadrature points / seg. 11
kcontact contact stiffness 3000
r yarn radius 0.125 cm

Table 5.1: Parameters used during rigid simulation.

over all control points is done, and it represents the only computation which

does not take advantage of the rigid hierarchy. However, this loop is extremely

fast since it merely needs to square the applied impulse at each control point,

without applying any other transformations, and so in practice it does not ap-

pear to represent a performance bottleneck.

5.4 Results

The rigidification code was implemented on top of the simulator discussed in

Chapter 4, using the Discrete Elastic Rods implementation of Section 4.5 but not

the further model improvements, and is written in Java and multithreaded. Re-

sults were generated on the same machines as in Chapter 4. Parameter settings

are specified in Table 5.1. In all images, red corresponds to the frequency with

which rigidification allowed the self-contact force computation to be skipped

for that piece of yarn; thus, the brighter and more frequent the red, the more the

expected speedup in the final result.

Figure 5.7 shows an animation of a scarf falling on a ground plane and then

being picked up again. There are many opportunities for rigidification to pro-

vide acceleration; however, the derigidifier must also be proactive in order to

82

maintain quality. Unfortunately, the noisiness in the impulse estimator both pre-

vents possible speedups and causes degraded quality in the final motion. The

sharp impulse with the ground plane is enough to correctly trigger the derigid-

ifier, but when laying at rest on the ground the impulse estimator is overeager

and continually derigidifies, not allowing the hierarchy to rigidify to the high-

est levels. At the same time, because of this noisiness τvel must be set relatively

high in order to allow even some rigidification, which means the estimator does

not respond entirely to the low speed unfolding behavior as the scarf is lifted.

Zones are derigidified as it is lifted, but the boundaries between rigidified zones

are still sharply visible as the hierarchy is never completely refined to the finest

level, which results in a significant reduction in the quality of the simulation.

Turning τvel down causes the velocity impulse estimator to be even more overea-

ger about derigidifying zones otherwise at rest, while turning it up causes the

simulator to fail to derigidify at all when it the scarf is being lifted.

Even excluding the concerns over quality, the expected performance gains

do not entirely materialize. Figure 5.8 shows the relative performance gain for

a blanket being simulated at various levels of rigidity in the hierarchy, normal-

ized to the cost of the unreduced model. Note that rigidifying at the leaves

of the hierarchy represents a small overall performance boost; this is due to

the fact that only a small fraction of the self-contact force computation can be

skipped. As it proceeds to higher rigidity levels the performance increases,

but remains less than 10 times faster than the unreduced model; this is most

likely due to the presence of the seams, where computing the self-contact force

requires traversing relatively deep in the bounding tree of quadrature points

even if it rarely gets to the leaves (the actual quadrature points). A 10x perfor-

mance boost would still be notable, if it did not require almost the entire cloth

83

to be rigidified; such situations would only be likely for cloth at rest. Looking

at more likely rigidification scenarios, in the level-2 to level-3 range, results in

a significantly more modest 2x to 3x speedup. This is in general borne out by

the larger-scale examples in Figure 5.9, where the cloth generally fails to rigidify

past the first few levels, and the overall speedup is modest.

5.5 Lessons Learned

Rigidification is an interesting idea, but this analysis seems to indicate there are

too many drawbacks to be an effective acceleration technique for cloth simula-

tion. Detecting when and where to derigidify is a challenging problem, made

more so by the fact that many interesting cloth behaviors arise as a result of

contact forces, which are difficult to account for in reduced models. Although

additional solutions for this could be pursued, it is unlikely that most simu-

lations would have enough rigid regions to achieve a significant performance

boost.

One possible conclusion to be drawn from this approach is that reduced

models are still a perfectly reasonable choice for accelerated cloth simulation,

but that a reduced rigid model is unsuitable. However, the goal is accelerating

the simulation, and evaluating the self-contact force was the most expensive

part by far. Rigidity was a useful reduced model precisely because it could

easily eliminate the need to evaluate portions of the self-contact force. More

complicated reduced models might require estimation of the contact force or

material stiffness parameters, reducing the overall speedup possible. Although

optimized cubature algorithms [1] could be used in conjunction with a tailored

reduced model that updates on the fly [65], it is unlikely that such an approach

could be trained sufficiently to adequately respond to the wide spectrum of con-

84

tact behaviors that may arise during simulation. As a result, the next chapter

will approach this problem from a different tack by looking to directly acceler-

ate the contact computation via approximations.

85

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.7: Scarf falling on a plane and then being picked up again

86

Level 0 Level 1 Level 2 Level 3 Level 4 Level 50

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Collisions

Total

Other energy
Constraints

R
el

at
iv

e
C

os
t (

to
 fu

ll
m

od
el

)

Figure 5.8: Performance scaling for blanket at various levels in the rigid hierar-
chy

87

Figure 5.9: Frames from falling blanket and sack examples

88

CHAPTER 6

ADAPTIVE CONTACT LINEARIZATION

As discussed in Chapter 5, evaluating contact response in yarn models is

the simulation bottleneck, but oftentimes that costly computation is expended

only to determine that some simpler behavior is occurring, e.g. the cloth isn’t

moving. Model reduction techniques such as the one explored in the previous

chapter look at this in the context of motion in a reduced space, for instance

the space of local rigid transformations, and then computing an exact force re-

sponse within this reduced configuration space while determining when the

reduced model is no longer valid. Unfortunately, this space of rigid transforma-

tions is too restrictive to effectively exploit, and it seems likely that other types

of reduced models would similarly struggle. The contact mediated structure

and widespread self-contact make it difficult to determine when the system is

straying outside of the space of motions available in the reduced space without

degraded mechanics or rewinding of the simulation.

Instead of computing an exact force response in a reduced space, though,

consider computing an approximate force response in the full configuration

space. Because no degrees of freedom are removed in the simulation, the model

can freely move, while the burden shifts to computing a reasonably accurate

approximation. However, this is simpler since the contact force is a summation

of local contact responses, and it is easier to determine at the force level which

pairwise contacts need better approximation instead of figuring out which de-

grees of freedom are currently unimportant (and, more critically, when they

are needed again). Moreover, errors in the force approximation can be quite

large before they result in differing motion, and even larger before they result in

qualitatively different material behavior, allowing for extremely cheap but not

89

necessarily very accurate force approximation.

While there is obviously a wide set of possibilities for force approximation,

there are additional features of yarn-based cloth to consider in the choice. Lo-

cally, internal contacts are coherent: they tend to persist throughout the simu-

lation, and the local yarn shape changes slowly (in a local frame of reference),

with individual contacts often exhibiting near-rigid motion. Consequently, the

contact force, although stiff, is temporally coherent, suggesting that the approx-

imation should take advantage of contact information over the course of many

simulation steps.

This chapter discusses a corotational force approximation to the yarn’s

penalty-based contact force. The exact contact response is computed for a par-

ticular configuration, and then a rotated linear force model is used to approx-

imate the force under small deformations. Once the shape changes too much,

a new model is built centered at the new configuration. Temporal adaptivity

is controlled by a single quality parameter that determines how frequently the

contact models are rebuilt. Section 6.1 shows how the contact evaluation is split

into a set of individual contact sets, each of which is individually approximated

to compute the force response by the linearized contact force in Section 6.2. New

contacts are discovered by the space-time scheduler of Section 6.3, which effi-

ciently finds new contacting regions while potentially managing tens of millions

of spline segment pairs. Results are shown in Section 6.4, and Section 6.5 ends

with some conclusions to be drawn about this approach.

6.1 Contact Sets

Although the space for potential contacts is huge in a yarn-based cloth model,

at any given point in time only a very small fraction of it is actually in contact.

90

0 262400

26
24

00

0

S

S
nnz: 17,214,918
contact sets: 23,727

Figure 6.1: Contact structure in single frame of falling scarf

Figure 6.1 shows a single frame of a scarf falling on a ground plane, and the cor-

responding contact matrix, which is the matrix showing which parts of the yarn

are in contact. The contacts clustered around the diagonal correspond to the

persistent contacts due to the knit structure, while the scattered clumps further

off the diagonal result from the folding of the scarf as it crumples. Due to the

looping nature of knits, however, these contacts can take on a variety of unique

shapes, shown on the right, with the actual pairs of points in contact in the con-

tact matrix shown in red and boundaries between spline segments marked in

gray.

Let S be the set of quadrature points used to compute the collision integral

in Equation 4.7; if there are n segments with b quadrature points per segment,

then S = [0, bn]. Individual contacts are then defined by partitioning S × S into

disjoint sets E,C0, C1, . . . , Cm, where E is empty space, and Ck is contact set k,

with the invariant that every pair of points (i, j) in contact must be in a contact

set: if i, j∈S and f(yi,yj) 6=0, then there is some k such that (i, j)∈Ck. Because

the contact matrix is symmetric, only the upper triangular part of S×S needs to

be partitioned. Contact sets are allowed to be time-varying, but for the moment

simply assume that the sets are given; their construction and maintenance are

addressed in Section 6.3. Contact sets can theoretically be of any shape, but in

91

C

S

S

1
C2

C3

E

Figure 6.2: Examples of contact sets

practice in this simulator they will be padded bounding boxes around small

contiguous contacts in S × S; this is due to performance reasons discussed in

Section 6.3.1. In the example contacts shown in Figure 6.1, the contact sets for

each contact are shown as a black box, while Figure 6.2 shows several contact

sets in context inside a contact matrix.

Given the partition into contact sets, the collision energy can be reformulated

as a sum over contact features,

E(q) =
m∑
k=0

Ek(q) =
m∑
k=0

 ∑
(i,j)∈Ck

wijf(yi,yj)

 (6.1)

where wij consists of all of the associated quadrature weights, stiffness con-

stants, and scaling by segment lengths. It follows that the total contact force

is a sum over all contacts,

f(q) = −∇qE(q) =
m∑
k=0

fk(q), (6.2)

with each contact’s force a sum over contacting quadrature points,

fk(q) = −∇qEk(q) =
∑

(i,j)∈Ck

wij∇qf(yi,yj). (6.3)

92

6.2 Linearized Contact Approximation

Ultimately, it is this sum over quadrature points which is the expensive opera-

tion. Looking back at Figure 6.1, individual contact sets can consist of hundreds

of sphere pairs which need to be processed and accumulated to generate the full

contact response. Instead of looping over all these sphere pairs, though, a signif-

icant speedup could be achieved if there were a sufficiently reasonable approxi-

mation that could be computed via a loop over segments (the gray lines) instead

of the sphere pairs (red boxes), avoiding the full evaluation of the penalty-based

contact force computation (6.3) at each timestep.

Taking advantage of this observation, each contact set maintains its own

local force approximation using a simple linearized model. These simplified

models are used as a cheap approximation of the true contact force for a set

of configurations near some reference configuration. When the current contact

configuration strays too far from the reference, the contact model is discarded

and a new one is constructed on the fly from the current configuration, which

becomes the new reference configuration.

For any given contact the linearization of the force around a reference con-

figuration q̄k=q(tk) is

f̃k(q) = fk(q̄k) + K̄k (q− q̄k) ≡ f̄k + K̄kq, (6.4)

where K̄k is the stiffness matrix of fk at q̄k, and the force offset is f̄k = fk(q̄k)−

K̄kq̄k. If contact Ck involves only c contacting quadrature points, then K̄k has at

most O(c2) nonzero entries. K̄ is also obviously symmetric, and each 3×3 block

corresponding to a control point is also symmetric. Thus, K̄ can be efficiently

stored in a dense triangular matrix format with 6 entries per 3 × 3 block, along

with f̄k. On subsequent timesteps t > tk, the linearized approximation of the

force (6.4) can be used to quickly approximate the true value of fk(q(t)). Note

93

that evaluating this approximation involves a loop over the control points which

are in the support of the quadrature points involved in the contact set, and not

over the quadrature points themselves; in the context of Figure 6.1, evaluating

the approximation is a loop over the intersection of the grey lines instead of the

red squares. Computing the initial linearization, however, still requires a loop

over the quadrature points.

6.2.1 Corotational Model

This linear approximation works well for configurations near the reference con-

figuration, but quickly diminishes in quality as the contact changes shape. How-

ever, many of these shape changes are actually large near-rigid deformations,

and because the contact force is a sum of pairwise interactions it transforms

rigidly in the expected manner. As a result, the linear approximation can be

improved by using a corotational force approach analogous to Müller et al. [74].

For each contact Ck, the nearest rigid transformation of the reference control

points q̄k associated with Ck to the deformed configuration q is estimated by

first matching the contact’s center of mass and then finding its rotation Rk using

the polar decomposition [77, 95]. The linear force model f̃k(q) in (6.4) is then

replaced by its corotational generalization,

fk(q) ≈ Rk f̃k(R
T
k q) = Rk f̄k + RkK̄kR

T
k q, (6.5)

where Rk ∈ IR(3n+3)×(3n+3) is the matrix with the 3×3 matrix Rk repeated on the

diagonal, and q-translations omitted since K̄k annihilates them. Due to sparsity,

onlyCk-related control points and forces are evaluated in practice. BecauseRk is

updated on each timestep, the polar decomposition can be further accelerated

via warm-starting the Jacobi iteration with the eigenvalues/vectors from the

94

previous timestep [95]. By tracking near-rigid motion, the corotational contact

force model (6.5) can be used longer than (6.4) before recomputation is neces-

sary.

6.2.2 Model Invalidation

Even with a corotational force model, at some point after sufficient non-rigid

deformation the linearized approximation (6.5) will be insufficiently accurate,

and so the the contact model must be invalidated and rebuilt. If the current

configuration, rigidly transformed back to the reference frame and denoted q̃k,

has strayed too far from the reference configuration q̄k, the linearized model

is discarded, the current configuration q becomes the new reference configura-

tion, and a new linear model is built. The shape estimate, metric(Ck), used to

indicate contact invalidation is

metric(Ck) = max
i
Mik2r‖(q̃k)i−(q̄k)i‖2/ε2k (6.6)

where if Ck = [umin, umax]× [vmin, vmax], then Mik is the weight for control point i

in contact k, taken to be

Mik =

umax∫
umin

|bi(s)|ds+

vmax∫
vmin

|bi(s)|ds,

and εk is the minimum distance between pairs of interacting quadrature points

in Ck computed when the model was last rebuilt. Again, due to sparsity in

the contact sets, this metric only needs to be evaluated for control points re-

lated to Ck. When this metric is larger than some user-supplied tolerance τ ,

the model is rebuilt; in practice, τ = 0.004–0.3, but sufficient speed and quality

can be achieved with τ = 0.04 and in general this parameter does not require

much, if any, tuning. This metric is cheap to evaluate, allows greater movement

95

for control points that weakly (or don’t) influence contact Ck, and causes more

frequent invalidations for close-proximity contacts.

6.2.3 Approximation Errors

Obviously, with a highly nonlinear force term and a linearized approximation,

errors will be introduced in the force computation. One important feature of

the metric (6.6) is that the introduced error will be zero when the tolerance τ

is set to zero; on every timestep, all models will be rebuilt around the current

configuration, which produces the correct force. As the value of τ is increased,

however, the linearized model will be used more often before invalidation. If

the value of τ is sufficiently large and the current configuration is sufficiently far

from the reference configuration, the force generated by the linearization may

actually reverse direction; the approximate contact force operates as an attrac-

tive force rather than a repulsive force. Figure 6.3 shows a simplified example

of this occurring in a one-dimensional contact response.

While on the face of it this appears to be a significant drawback, there are

several issues to consider. The first is that the approximate force will always

be repulsive at the reference configuration, since it is always correct, and so

configurations where the force is attractive will always be further apart than

the geometry at the reference configuration; the linearization will not result in

contacts wanting to be closer than the reference configuration. Secondly, this

is an issue of parameter tuning, and in practice there seems to be a reasonably

large space of parameter values for τ where this is not an issue. Finally, since the

force becomes attractive, continuing to separate the contact requires additional

energy influx at the contact in order for it to overcome the contact force. At

some point, the metric will be invalidated and the contact will be rebuilt, and

96

Distance

Fo
rc

e

0

Valid region

Force reversal

Figure 6.3: Force response curve and linearization in one dimension, with a
valid region that includes force reversal

the force will once again become repulsive, but the energy needed to overcome

the previously attractive force is lost. Thus, overly aggressive linearization acts

as a form of damping in the system, and setting the parameter τ too large results

in excessively damped cloth. This behavior can be observed in the validation

study performed in Section 6.4.

6.3 Contact Adaptation

The contact algorithm is broken up into several phases, which can be broadly

categorized into “contact detection” and “contact evaluation.” The algorithm is

summarized in Figure 6.4.

97

f (t+1) = evaluate other forces()

for each segment i
rasterize to grid(i)

for each new segment/cell pair i, j

create schedule(i, grid(j))

for each schedule entry sched

process schedule(sched)

coalesce contacts()

for each contact Ck
if (metric(Ck) > τ) rebuild model(Ck)

f (t+1) = f (t+1) + compute force(Ck)

q̇uncons = q̇(t) + hM−1f (t+1)

q̇glue = satisfy glue constr(q(t) + hq̇uncons)

q̇length = satisfy length constr(q(t) + hq̇glue)

q̇damp = nonrigid damping(q̇length)

q̇(t+1) = object contact(q(t) + hq̇damp)

q(t+1) = q(t) + hq̇(t+1)

quasistatic frames()

Figure 6.4: Algorithm Overview

6.3.1 Representation

From the description in Section 6.2, there is an obvious performance tradeoff in

the construction of the contact sets Ck. Choosing to make smaller sets means

that they are cheaper to update but produces more sets to process and increases

the cost of set maintenance, for instance to determine when sets are overlapping.

To strike a balance between these competing concerns, contact sets are rep-

resented by bounding boxes in S × S, and contain an estimate of a single con-

tiguous contact between two parts of the yarn along with a specified amount

of padding α to aid in detecting contact sliding (see Figure 6.6). Overlap tests

are thus trivial to implement, and it provides a simple rule for when and how

to merge contact sets. At the same time, in testing it seems to reasonably bal-

ance the number and size of contact sets while only including a relatively small

number of non-contacting points.

98

6.3.2 Detection

At each timestep, contact detection explores the empty contact space, E, to find

newly colliding points and either (a) incorporates them into an existing contact

if they overlap, or (b) creates a new contact. Given the sheer size of E, effi-

ciency is of paramount importance. Moreover, the structure of the cloth leads to

a large number of non-convex objects in close proximity, which often presents a

problem for many collision detection algorithms. Thus, in order to take advan-

tage of the temporal coherence of the cloth, the simulator uses a combination a

broad-phase spatial hashing of spline segments to find potential new contacts

and a space-time collision scheduler that can efficiently track millions of close-

proximity spline segment-segment pairs.

Due to the sheer number of quadrature points and potential pairs, the sched-

uler tracks potential collisions between pairs of spline segments, each of which

contains b quadrature points. However, contact sets are defined at the quadra-

ture point level, which means that between any two segments some pairs of

quadrature points may already belong to a contact set while others do not.

Thus, in order to completely explore E while not spending time rediscover-

ing already-known contacts, each schedule entry also stores a bitmap which

allows finer control over which pairs of quadrature points are already part of

some existing contact and which still need to be checked. For memory rea-

sons, this bitmap is implemented as a single 64-bit integer, allowing for a max-

imum sub-segment resolution of 8 × 8. Finally, each schedule entry i stores a

conservative minimum distance bound dti which represents a best (but conser-

vative) estimate for the closest possible distance between the two segments at

time t. The estimator also makes use of the maximum movement and maximum

change in movement of each segment per timestep, denoted as ∆ymin,∆ymax

99

and ∆2ymin,∆2ymax, which are defined respectively in units of distance per

timestep and distance per timestep squared.

Contact detection is divided into four phases: grid rasterization, newcomer

scheduling, schedule processing, and contact coalescing

Grid Rasterization

The first step rasterizes each spline segment into a hashed uniform grid cen-

tered on the cloth’s center of mass, with cell width γ. The AABB of each spline

segment is computed in parallel by solving three quadratic equations to obtain

its maximum and minimum extent in each of the three dimensions. Grid cells

overlapping the AABB are marked as occupied by the segment. A segment not

already belonging to a grid cell is flagged as a newcomer to the cell. At this

time, the minimum and maximum movement and change in movement of the

spline segment over the previous step are also computed (by solving six more

quadratics) for later use by the scheduler.

Note that if two segments occupy disjoint sets of grid cells, this serves as a

certificate that the segments cannot be in contact. Since this is performed for

all segments on every timestep, this serves to filter out any possible contacts

between segments for which this is true. Figure 6.5 shows a histogram of maxi-

mum AABB edge length for segments, normalized to the grid size of 0.6cm, for

a single timestep of the sweater; nearly all segment bounding boxes are smaller

than a single grid cell.

Newcomer Scheduling

After grid rasterization, each cell newcomer is checked in parallel against the

cell’s other segments to see if there is already a collision schedule entry for that

100

0.50 1.51

Figure 6.5: Histogram of segment size, normalized to grid size

newcomer-segment pair; if not, one is created and marked for immediate pro-

cessing (by marking its minimum distance bound as negative).

Space-Time Schedule Processing

Once all possible schedule entries are created, the schedules are looped over in

parallel and executed. When an entry is determined to need full processing, the

scheduler examines all active pairs of quadrature points on the two segments,

computes the true minimum distance, and sets dti to the true minimum distance

between the segments.

For schedule entry i, the minimum distance estimate dti between the pair of

segments is used to determine when full processing is needed. As long as the

minimum distance is positive, then they are known to not be in contact. The

scheduler updates this minimum distance estimate and only fully processes the

entry again when the estimate becomes negative. This minimum distance esti-

mate is updated using the minimum and maximum movement computed dur-

ing grid rasterization to determine the maximum relative movement between

101

the two segments over the previous timestep

∆di =



max(|∆ymax
seg1.x−∆ymax

seg2.x|, |∆ymin
seg1.x−∆ymax

seg2.x|,

|∆ymax
seg1.x−∆ymin

seg2.x|, |∆ymin
seg1.x−∆ymin

seg2.x|),

max(|∆ymax
seg1.y −∆ymax

seg2.y|, |∆ymin
seg1.y −∆ymax

seg2.y|,

|∆ymax
seg1.y −∆ymin

seg2.y|, |∆ymin
seg1.y −∆ymin

seg2.y|),

max(|∆ymax
seg1.z −∆ymax

seg2.z|, |∆ymin
seg1.z −∆ymax

seg2.z|,

|∆ymax
seg1.z −∆ymin

seg2.z|, |∆ymin
seg1.z −∆ymin

seg2.z|)


. (6.7)

One simple approach updates the minimum distance estimate each timestep

according to the rule dti = dt−1
i − ‖∆di‖2. This distance bound is guaranteed

to always be less than or equal to the actual minimum distance between the

two segments, and so entries are guaranteed to be processed on time. Experi-

mentally, this also succeeds in filtering out the vast majority of possible all-pairs

checks per timestep, but it does incur the cost of examining and updating dti

for each schedule entry every timestep to determine if it needs to be processed

further.

This cost of simply examining each schedule entry can begin to dominate the

overall cost of schedule execution, however, due to the vast number of schedule

entries. To compensate for this, the schedule is further divided into a set of bins,

where each bin λ∈ [0, λmax] will now only be examined every 2λ timesteps. Each

segment now also stores the minimum and maximum movement ∆ymin(λ) and

∆ymax(λ) over the previous 2λ timesteps. When bin λ is examined, each schedule

i in the bin updates its minimum distance bound dti=dt−2λ

i − ‖∆dλi ‖2, i.e., using

the maximum relative movement over the time period in which it was not being

examined. After either examining or processing a schedule, it is then assigned to

an appropriate bin based on the current minimum distance, maximum relative

movement ∆dλi , and maximum relative change in movement ∆2di by solving

102

the quadratic equation:

−di + ‖∆dλi ‖
t

h
+

(
t
h

)2
+ t

h

2

(
‖∆2di‖+ ω

)
= 0, (6.8)

to find the minimum nonnegative root, then assigning it to bin max(0, blog2
t
h
c).

Because the relative velocity could change arbitrarily between checks, as in

Hubbard [53] Equation (6.8) allows for some bounded deviation in relative

change in movement ω. When the relative change in movement between the

two segments is larger than ‖∆2di‖ + ω, the predicted bin is no longer valid

and dti needs to be immediately updated and a new bin reselected. However,

the original goal was to avoid examining every schedule pair every timestep.

Thus, the scheduler instead monitors the total change in movement of each seg-

ment, and when it is more than ω
2

from some reference change in movement, all

schedules associated with that segment are immediately scheduled to have their

minimum distance estimates updated, and the reference change in movement

is updated to be the current change in movement. This conservatively resched-

ules contacts before their bin assignment becomes incorrect, while avoiding any

loops over all schedules every timestep, at the cost of invalidating some sched-

ule entries before their bin assignment is actually invalid.

Contact Coalescing

The output of the schedule processor is a list of quadrature points (i, j) ∈ S ×

S that are currently in contact. The coalescer then takes these pairs (i, j) and

groups them together into new contiguous contacts by floodfilling in S × S the

axis aligned bounding box (i−α, j−α) through (i+α, j+α). Any overlapping

contact sets (either new or pre-existing contacts) are merged into new AABBs

until no more merges are required. This results in contact sets with a buffer of

103

(a) (b) (c)

Figure 6.6: Contact Resizing

non-contacting pairs α around the detected contact, which allows the contact

processor to detect when to resize a particular contact.

6.3.3 Evaluation and Evolution

After detecting new contacts, all contacts must be evaluated. This involves loop-

ing over the contact sets Ck in parallel, computing the best rigid transformation

and evaluating the contact-invalidation metric. If the metric is not violated, the

contact set evaluates the current approximate model (6.5) via matrix-vector mul-

tiplication and vector addition. Because of the semi-regular looping structure of

cloth, contiguous contacting regions tend to be small and localized, leading to

small contact sets (which are designed to cover a single contact each); in prac-

tice, contact matrices K̄k typically have between 24 and 63 rows/columns.

If the metric (6.6) is violated for contact k, the linearized contact model

(f̄k, K̄k) is rebuilt for q̄k =q, which involves looping over all (i, j) ∈ Ck to accu-

mulate first and second derivatives of f(yi,yj). Once this is done, corotational

forces are evaluated using (6.5). While looping over the set, the model rebuilder

also computes the minimum and maximum points imin, imax, jmin, jmax that are in

104

S

S

C

C

1

4

C2

3C

Figure 6.7: Contact Merging

contact, and afterwards updatesCk to cover [imin−α, imax+α]×[jmin−α, jmax+α].

Figure 6.6 shows this process in action; the contact (a) slides between updates to

(b), shifting the set of points in contact, but the buffer allows this to be detected

during update and the contact resizes itself to the new bounds (c). If there are no

contacting points in the set it is marked as contributing zero force, and once the

minimum inter-point distance becomes larger than some threshold (in practice,

2.1r) then Ck is deleted and the pairs of points in Ck become part of the empty

region, E.

The contact set structures can also be used to efficiently model additional

yarn behaviors at negligible cost. As a simple example, each contact set also

maintains a small number (4) of stiction springs which model the interactions

due to entangled fibers. These springs are inserted at fixed locations within the

contact set, and are broken and rebuilt once their energy exceeds a specified

value.

Following this contact evaluation, the simulator must determine whether

the contacts are now overlapping in order to avoid double-counting of contact

force contributions. To efficiently accomplish this, S is divided into a set of bins

105

parameter description value
τ approximation tolerance 0.004 – 0.3
α flood-fill size 3
γ grid size 0.6 cm
λmax num. schedule bins 8
ω movement change bound 0.0006 cm/timestep2

h timestep 1/16200s – 1/24000s
b quadrature points / seg. 11
kcontact contact stiffness 3000 – 4500

Table 6.1: Parameters used during ACL simulation.

(with each bin of size 8) and each Ck is placed into each bin for which its first

dimension overlaps. The bins are then looped over, scanning for overlaps only

among sets in that bin, and merging any that are found. This process is illus-

trated in Figure 6.7. Note that C2 and C3 are overlapping, which causes them

to be merged together, which will then cause a cascading merge with the resul-

tant merged contact and C4. In principle, contacts should also be checked to

determine if they have in fact split–that is, one contact set is now representing

multiple contiguous contacts–since the cached dense stiffness matrix might be-

come large with many zero entries. Because cloth has such regular structure,

however, in practice it does not appear to be necessary to split contact sets into

subpieces since contact splitting is a rare occurrence, and when it does happen

the contacts tend to stay close to each other (see Figure 6.1 for examples of con-

tact splits), and so the matrices stay reasonable in size. Note however, that this

appears to be a result of a cloth-specific property; if this method were adapted

for e.g. hair contact, it is much more likely that explicit contact splitting would

be necessary.

106

model scarf scarf scarf scarf sack afghan sweater
loops 3,240 - - - 41,272 54,340 45,960

segments 26,240 - - - 334,464 438,485 370,650
tolerance 0.004 0.04 0.1 0.3 0.04 0.04 0.04
contacts 23,186 23,475 24,296 29,037 262,062 365,305 295,702
updates 3.7% 0.46% 0.19% 0.04% 0.30% 0.47% 0.21%

contact eval
old 254ms - - - 3,063ms 3,995ms 3,665ms
new 41.7ms 30.9ms 30.5ms 32ms 366ms 600ms 405ms

speedup 6.1x 8.2x 8.3x 7.9x 8.4x 6.7x 9.1x
overall (per 1/30s frame)

old 4m10s - - - 33m55s 44m8s 40m16s
new 58.4s 50.2s 50.6s 50.8s 7m27s 10m34s 8m6s

speedup 4.3x 5.0x 4.9x 4.9x 4.6x 4.2x 5.0x

Table 6.2: Model and scene statistics and timings (All numbers and timings are
an average number over 2s of simulation)

6.4 Results

The adaptive contact linearization method was implemented on top of the sim-

ulator discussed in Chapter 4, including the optimizations discussed in Sec-

tion 4.5, and is written in Java and multithreaded. Results were generated on

a Mac Pro machine with two 4-core 2.93GHz Intel Xeon processors with 16GB

of RAM. The adaptive contact linearization force is compared against the paral-

lelized bounding hierarchy descent method discussed in Section 4.3.2. In order

to estimate scheduler performance, the adaptive contact linearization force is

also compared to simulations where the tolerance was zero (so models are re-

built on every timestep) and stiffness matrix computation was disabled, provid-

ing a good approximation of the best possible speed obtainable when solving

the contact forces exactly on each timestep. Timings and performance break-

downs are in Table 6.2 and Figure 6.10. Note that the average cost of contact

coalescing was negligible (< 1ms) in all simulations and is thus omitted from

timings.

107

Reference

Tolerance = 0.04 Tolerance = 0.1 Tolerance = 0.3

Tolerance = 0.004

Figure 6.8: A scarf falling on a flat plane for a variety of tolerances.

Figure 6.8 shows the results of a validation comparison to measure the qual-

itative accuracy of adaptive contact linearization with various tolerances, as

well as the reference implementation. In this experimental setup, a scarf falls

on a ground plane. Because for this example trivial deviations in force can re-

sult in drastically different behavior, variations in the final configuration are

expected. For small tolerances (τ = 0.004), the simulations are qualitatively

identical, with indistinguishable behavior for the entire simulation. At higher

108

Figure 6.9: Sack, with model updates visualized in red. Pure red is ≥13 updates
over the 1/30s frame (540 timesteps)

tolerances (τ = 0.04 − −0.1), the small deviations introduced by the approxi-

mate force result in the cloth ending up in a different final state, although it still

has the same qualitative material properties as it moves. Finally, at the highest

tested tolerance (τ = 0.3), the approximation becomes evident resulting in dif-

ferent material behavior, although it still is plausible; the material looks overly

damped, a result of the issues discussed in Section 6.2.3. Note also that the over-

all speedup levels off, indicating that the vast majority of the time is spent on

scheduling and force evaluation, and not model regeneration.

However, the main benefit of ACL forces is the simulation of significantly

larger yarn models, consisting of 41,000 to 54,000 knit loops (compare to the

3,240 loops in the scarf). As the sack (Figure 6.9) is filled with 90 rigid balls,

model updates (exaggerated in red, with pure red corresponding to ≥ 13 up-

dates per frame) are localized primarily around where the spheres contact the

109

cloth resulting in contact computation speedups from 7.5x to 9.4x (averaged

over 5 frame intervals), and 4.3x to 4.8x overall. A blanket (Figure 6.11) falls

onto a sphere, causing high speed self-contacts across large portions of the cloth

and large scale global deformations; this is the most challenging scenario for

both the model and scheduler due to the high speed contacts and rapid defor-

mations, but it still results in speedups from 4.5x to 8.4x in contact computation

and 3.3x to 4.7x overall. Finally, a wooden mannequin wearing a sweater walks

forward (Figure 6.12), showing efficient simulation of character-sized garments

in complex contact configurations; this achieves speedups from 7.5x to 10.5x in

contact computation and 4.5x to 5.3x overall. Note also that because the yarns

were simulated directly, the model automatically captures the curling behav-

ior of stockinette, visible at the ends of the sleeves and body. The size of these

models challenges the scalability of exploring empty space, but for instance on

the sweater the scheduler limits the number of overall schedule entries being

tracked to an average of 14 million, with on average only 1.2 million examined

and 77,000 processed per timestep.

In all scenes the percentage of model updates per timestep is extremely low,

on the order of 0.5% per timestep, corresponding to more than 200 timesteps

between invalidation for the mean contact set, or around three times per 1/30s

frame. Thus, even though the simulator takes small timesteps, the temporal

coherence is such that contact linearization and invalidation would still be ef-

fective even with a timestep 10x larger. In addition, even with relatively con-

servative tolerances the cost of model updates in an amortized sense was neg-

ligible, as seen in the cost for the various scarves; if larger timesteps were used

and model updates became a performance bottleneck, the tolerance could be

increased while still producing reasonable results.

110

254 ms

3,063 ms

Sc
ar

f
Sa

ck
Sw

ea
te

r
A

fg
ha

n

3,665 ms

3,995 ms

other forces
constraints

damping / objects
quasistatic frames

other forces
constraints

damping / objects
quasistatic frames

other forces
constraints

damping / objects
quasistatic frames

other forces
constraints

damping / objects
quasistatic frames

reference
tol = 0

tol = 0.004
tol = 0.04
tol = 0.1
tol = 0.3

reference
tol = 0

tol = 0.04

reference
tol = 0

tol = 0.04

reference
tol = 0

tol = 0.04

Grid Newcomer Scheduling Force

Figure 6.10: Performance comparison of adaptive contact linearization

111

Figure 6.11: Blanket falling on sphere

6.5 Conclusion

This chapter has discussed a method for speeding up contact force evaluations

for yarn-based cloth models by breaking up the contact problem into a set of

disjoint regions and adaptively constructing local models for each region to ap-

proximate the true force response. This results in typical speedups of 7x-10x

over naı̈ve force evaluation, which brings the cost of force evaluation in line

with other phases of the simulation, while still maintaining similar (and in many

cases, visually identical) motion.

This contact-level approach may lead to many interesting future possibilities

for both quality and performance improvements that are difficult to solve using

naı̈ve contact evaluation. In particular, further additions may help address two

of the most pressing problems in yarn-based simulation: modeling hysteresis

and taking larger timesteps. As discussed previously, hysteresis and damping

is a critical component to get right in order to achieve accurate cloth simulation.

Adding plasticity in at the contact level is more physically plausible (due to fiber

112

Figure 6.12: Four frames from the sweater animation

113

entanglement), and the contact set formulation provides a primitive on which

to model these effects, as in the simple approach of adding stiction springs.

Current timestep restrictions are due to two factors: the stiffness in the colli-

sion response, and, more crucially, the inability to detect and respond when the

yarns slip through each other. This is a catastrophic simulator failure, since it

can lead to the entire structure unravelling, and is currently addressed through

small timestepping to ensure sufficient time for contact force response. Mov-

ing contact evaluation to a higher level (contact sets instead of collision points)

should allow the simulator to more easily detect when this occurs. Ultimately,

the hope is that this will lead to the ability to adaptively timestep yarn-based

models and automatically step down when the timestep becomes too aggres-

sive and results in slip-through.

114

CHAPTER 7

CONSTRUCTING YARN GEOMETRY

All physical simulations which rely on the solution of initial value problems

naturally require some way to specify or generate the initial conditions or con-

figurations which will be simulated. For some simulations this can be easy or

even trivial; consider for instance the case of elastic sheet simulation, where the

initial geometry can simply be specified as a mesh created using standard mod-

eling tools. Unfortunately, for yarn-based cloth simulation the initial configura-

tion involves specifying the rich yarn geometry; these yarns must be properly

interlooped or interlaced, since any errors in their construction propagate to the

final result. While this geometry can also be constructed by hand using stan-

dard modeling tools, large models can involve tens of thousands of local yarn

relationships and are thus are impractical to model without automated tools.

Woven fabrics, due to their simpler local geometry, are relatively straightfor-

ward to generate automatically, but the complexity of the loop interactions in

knits make them particularly difficult to recreate. However, although in theory

the geometry for each loop in a piece of knitted fabric might be different, in prac-

tice there is a significant amount of repetition in almost all fabrics. As a result,

automated systems to construct geometry given initial specifications (e.g. knit-

ting instructions) should in principle be possible. For instance, systems have

been proposed for generating knit geometry by simulating the knitting process

itself [30, 28]. A slight twist on the problem was discussed by Igarashi et al. [55],

which takes as input mesh geometry and additional user input and generates

a possible yarn geometry and knitting instructions corresponding to the mesh.

Section 7.1 discusses the implementation of a basic automatic knit yarn gen-

erator which uses the simulator itself to enable the creation of models for the

115

simulator; this is the tool that was used to generate all of the models in this the-

sis. Following that, Section 7.2 discusses some possibilities for more elaborate

knit yarn generators in the future.

7.1 An Automatic Knit Yarn Generator

Although there is a wide variety of knit stitches available, in practice a typical

piece of fabric only uses a small number of them. These stitches will each take

on some shape in the final fabric, but that shape is determined by the types

and shapes of other stitches in the local neighborhood around each stitch. In

addition, because of the regular repeating nature of most cloth, there are likely

to be a limited number of distinct neighborhoods as well. Thus, although there

may be a large number of stitches overall, there are likely to be a small number

of unique stitch shapes (expressed in some reference frame). A piece of knit

fabric can then be generated using models of all the types of stitches that might

be seen, with the generator given as input a list of stitches and outputting the

correct geometry at each stitch location based on the stitch type as well as the

local neighborhood.

This can still require a significant number of stitch models. For instance, a

single knit stitch may require separate models if it is next to a purl stitch in each

of the four fabric directions, on the edge of the fabric, or next to a bind-on /

bind-off. However, the number of stitch models can be further limited via the

observation that the generator does not need to generate final geometry for the

model; rather, it simply needs to generate ‘good enough’ geometry with the

proper interlooping of yarns. This geometry can then be refined in the simula-

tor, further relaxing the geometry to a final rest state which corresponds to the

actual knit model to be simulated. As a result, stitch models merely need to

116

U
nr

el
ax

ed
R

el
ax

ed

Garter Stockinette Rib

Figure 7.1: Unrelaxed and relaxed geometry for each of the three basic knit types
(yarn radius shrunk for clarity).

guarantee proper interlooping, with other errors in shape corrected afterwards,

and so many fewer potential models are needed. Figure 7.1 shows both the ini-

tial geometry and the geometry after further refinement in the simulator for the

three basic knit types.

Based on this, a simple knit yarn generator for rectangular / cylindrical fab-

rics can be created using only 7 stitch models (see figure 7.2). The stitch models

are designed to fit together seamlessly, with a single model of a general loop

forming the bulk of the fabric and the other six models forming the boundary.

This general loop model can be furthermore flipped along the z-axis to create

either a knit or a purl stitch. Given a m × n bit array P , where Pi,j = 1 means

that stitch (i, j) is purled, and the number of spline segments k to generate per

stitch, the generator forms a single spline curve to describe the fabric by laying

down one stitch at a time and finding the best least-squares spline approxima-

tion of that stitch using k segments and given the control points already added

by the previous stitch. Since control points already added are fixed, this results

in a small least-squares problem of size O(k) to be solved for each stitch in the

117

bottom_bindoff bottom

base

top top_bindoff

base_connect

bottom_connect

Figure 7.2: Stitch models for basic grid / cylindrical construction.

fabric. Cylindrical fabrics can be generated by simply laying down stitches in a

helix, with the height of the helix equal to one row of stitches; the next row will

then logically start immediately from the end of the previous row.

The goal of the model generation is to obtain a configuration where all of

the loops are properly interconnected according to the specified pattern, but it

is not necessarily the rest state. The rest state is determined by then simulating

the pattern using the simulator with a few slight changes. The yarn is no longer

treated as inextensible but is instead treated as being linearly elastic with high

stiffness; this allows the yarn to stretch and compress as needed to fit the final

model. In addition, high amounts of viscous damping are used, since although

the model is in a feasible configuration it may be in a relatively high-energy

state, and damping helps to limit energy growth and bleed energy out of the

system. Finally, the yarn is shrunk by setting the desired arclength `i of each

spline segment to c`0i , where `0i is the starting arclength and c< 1 is a shrinking

factor. This shrinking factor is obviously dependent on the model stitches used

in the generator; particularly loose stitches will require a larger shrinking factor.

118

increase

base_short base_flat base_long base_shortconnect

top_angle top_flat top_join

Figure 7.3: Additional stitch models for generating the sweater model.

For the stitch models in figure 7.2, c = 0.935. This causes the entire cloth to

compress and settle into a general rest state, which can then be used as a cloth

sample in simulations.

This process works well for simple cloth models that can be expressed as

combinations of cylindrical and rectangular patches, but moving to more com-

plex topological knit structures significantly increases the complexity of the gen-

erator. For the sweater shown in Figure 6.12, for instance, each row of the up-

per part of the chest consists of a set of eight increases (two each on each side

and front/back) until the sleeves are attached; afterwards, the yarn shifts to

a cylindrical pattern to form the bottom half of the chest. The same generic

process of laying down stitches in succession was used to form the initial geom-

etry for the sweater, but placing stitches correctly required much more tweak-

ing to ensure proper looping behavior (and in some cases, such as around the

neck, it is likely that errors in the structure were introduced during this initial

laying of stitches). Moreover, although there was only one new type of stitch

introduced—an increase—eight additional stitch models were used in order to

119

adequately reconstruct the geometry given the sharp turns in the construction.

Figure 7.3 shows the additional eight stitch models, many of which simply rep-

resent a small variation on the original stitch necessary to achieve correct inter-

looping.

7.2 Future Directions

Obviously, while the generator described in Section 7.1 is capable of easily cre-

ating topologically simple models and, with modification, specific instances of

more complicated geometry, it does not seem to fulfill the goal of a general,

all-purpose cloth generator. It is worth taking a step back and examining what

properties are desirable and what should be the final result. In order to be of

practical use, cloth should be able to be generated by non-programmers, while

the semi-scripted method of laying stitches in Section 7.1 requires programmatic

effort to support each new type of clothing. As a result, it would be ideal if the

generator could automatically determine the final shape, both local and global,

of the piece of clothing without any additional input.

Out of several general ideas which were explored, one in particular seemed

to present some promise, built on the idea of breaking the problem up into mul-

tiple pieces. The generator above moves from “instructions” to final geometry

in essentially one step, when in fact there are multiple smaller steps that can

be performed and verified in sequence. Ultimately, knit geometry is described

by a set of loops, and relationships defined between those loops. One way of

expressing these loop relationships is as a graph: given a loop L, there is a pre-

decessor and successor loop in the yarn direction (the loop formed by the yarn

immediately before and after L), as well as the loop L is pulled through, and

some number of loops (possibly zero) which are themselves pulled through L

120

AB C

D

E

is the successor of Loop B
is the predecessor of Loop C
is knit through Loop E
has loop D knit through itself

Loop A:

Figure 7.4: A simple knit structure and associated loop relationships

(See Figure 7.4 for a diagram of one set of relationships for a loop in a standard

knit). Then, one way of decomposing the problem of model generation is as

follows:

1. Convert knitting instructions or model into graph of knit loops and rela-

tionships between loops

2. Given the graph of relationships, find positions and orientations for all

loops which locate related loops in their proper relative positions, which

reconstructs the global shape of the fabric

3. Generate geometry for each loop which precisely satisfies the relationships

4. Use the initial geometry and the simulator to relax the geometry to the

final rest position

With clear separation between the steps, solutions to each phase can now be

pursued individually.

121

7.2.1 Finding Loop Positions

Given that the loop relationships are expressed as a graph, it suggests apply-

ing graph algorithms to find stitch locations. To do so, the graph of relations is

converted into local relative distances between yarn loops and then global posi-

tions are found for all loops which best satisfy the relative distances with respect

to some metric. It is important to note that because the relationship graph is in-

complete, the relative distances between yarn loops may also be incomplete; the

idea is that each yarn loop should only specify distances to other yarn loops in

some small local region around itself (based on the set of relationships defined

by the graph), with global reconstruction following from these local distances.

Two potential (and related) methods for achieving this local-to-global recon-

struction were explored: spectral embedding and locally linear embedding.

Spectral Embedding

In spectral embedding [25, 100], given a nonnegative weighted graph in matrix

form A ∈ IRn×n and A(i, j) being the weight between vertices i and j, each

vertex i is assigned a k-dimensional position xi which minimizes∑
0≤i,j<n

A(i, j)‖xi − xj‖22, (7.1)

that is, minimizes the energy function which penalizes the 2−norm distance be-

tween points based on the weight between those points in the graph. This is

done by computing the eigenvectors of the matrix L = D − A where D is the

diagonal matrix consisting of the sums of each row/column of A. For nonneg-

ative weights L will be positive semi-definite, with one zero eigenvector (the

vector of all ones). The eigenvectors v2 . . .vk+1 corresponding to the k smallest

non-zero eigenvalues are the minimizers of Equation 7.1; each vertex is assigned

position xi = [v2(i),v3(i), . . .vk+1(i)]
T .

122

Given a set of desired distances between some sets of yarn loops, these must

be converted into weights on a graph such that greater distances between loops

correspond to smaller weights: for instance, A(i, j) = 1/d(i, j) if the distance

between loops i and j is specified, and A(i, j) = 0 otherwise. Alternatively, the

distances can be linearly mapped to the weights by setting A(i, j) = α + β −

d(i, j), where α = max
i,j

d(i, j) and β = min
i,j

d(i, j); in practice there seems to be

minimal differences between the two mappings in the results.

Locally Linear Embedding

In contrast to spectral embedding, locally linear embedding (LLE) directly seeks

to recover low-dimensional data from some high-dimensional input [97]. For

instance, measurements of data may be taken in a high dimensional space, but

they are actually well-described by a lower-dimensional surface embedded into

the high dimensional space. This embedding may be nonlinear, however, and

so LLE attempts to find it through local linear approximations; if data points

are dense enough, then the local linear approximation is expected to be a good

one. Given the n data points x̄i in p−dimensional space, the algorithm computes

reconstruction weights wij and positions xi in k−dimensional space which min-

imize the two equations:

∑
i

|x̄i −
∑

(i,j) related

wijx̄j|2 (7.2)

∑
i

|xi −
∑

(i,j) related

wijxj|2 (7.3)

This is done in two stages—the first equation is minimized over the weights wij ,

and then the second equation is minimized over the positions xi given the fixed

weights. Much like spectral embedding, this second phase involves computing

the eigenvectors corresponding to the smallest eigenvalues of a matrix whose

123

sparsity depends on the number of neighbors of each data point.

Because it assumes data points already exist in high dimensional space, LLE

requires a bit of modification to fit the knit model generation problem. The most

straightforward way of adapting it involves recognizing that the LLE algorithm

does not care what the high-dimensional positions of each data point are, only

the relative positions to all the data points in its local neighborhood. Thus,

rather than converting the relationship graph to relative distances, it is con-

verted to relative positions; for instance, loop L is assigned to (0, 0, 0), and the

successor loop to loop L might be assigned a relative position of (1, 0, 0), while

a loop pulled through Lwould be assigned relative position (0, 1, 0). Given this,

LLE can then be applied directly to produce global positions for all loops.

Yarn Loop Neighborhoods

In general, it is not entirely sufficient to specify distances to just the set of loops

directly related to each loop, as this can result in the collapse of the geometry

to a few points. Instead, relative distances (or positions) are computed at each

yarn loop L for all loops related to L, and all loops related to loops related to L

(the 2-neighborhood around L)

Results

As a first test, both spectral embedding and locally linear embedding were com-

pared when reconstructing a 10 × 10 grid of simple knit stitches, where each

point represents a yarn loop. Figure 7.5 has the results of a square of fabric,

embedded into R2. Both methods produce acceptable embeddings, although in

spectral embedding the edges tend to be a little more compressed as compared

to LLE, which produces a uniform plane. Because the relationships are entirely

124

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Spectral Embedding Local Linear Embedding

Figure 7.5: Comparison of 2D embeddings of 10 × 10 grid for both spectral
embedding and Local Linear Embedding

−1
0

1

−1

0

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2
−1

0
1

2

−2
−1

0
1

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1
0

1−1.5

−1

−0.5

0

0.5

1

1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5
−1

−0.5
0

0.5
1

−1
−0.5

0
0.5

1
1.5

−1

−0.5

0

0.5

1

−1

0

1

−1.5
−1

−0.5
0

0.5
1

−1.5

−1

−0.5

0

0.5

1

1.5

Planar Boundary Cylindrical Boundary Toroidal Boundary

Sp
ec

tra
l

Em
be

dd
in

g
Lo

ca
l L

in
ea

r
Em

be
dd

in
g

Figure 7.6: Comparison of 3D embeddings of 10 × 10 grid for both spectral
embedding and Local Linear Embedding, with varying boundary conditions

125

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−1
0

1

−1

0

1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1

−1.5

−1

−0.5

0

0.5

1

1.5

−1
0

1

−1

0

1

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−1
0

1

−1

0

1

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Sp
ec

tra
l

Em
be

dd
in

g
Lo

ca
l L

in
ea

r
Em

be
dd

in
g

20x10 Grid 30x10 Grid
30x10 Grid, 2nd, 5th, 6th

smallest eigenvectors

Figure 7.7: Comparison of 3D embeddings of 20 × 10 grid and 30 × 10 grid for
both spectral embedding and locally linear embedding

local, a cylindrical piece of fabric can be generated by simply relating the right-

most column to the leftmost column of stitches, while a toroidal piece of fabric

can be generated by also relating the topmost row to the bottommost row. The

results of both methods and all three boundary types are shown in Figure 7.6.

Note that in 3D, the plane is embedded in a saddle point configuration. For

the cylindrical and toroidal boundary conditions, spectral embedding properly

predicts that the sheet will roll up into a cylinder and torus, respectively. The

implementation of LLE, however, has issues with these conditions and produces

sub-optimal shapes.

As a second test, both algorithms were also run on 20× 10 and 30× 10 grids,

with planar boundary conditions. Results are shown in Figure 7.7. Note that

as the grid becomes more and more rectangular, the spectral embedded ver-

sion begins taking on alternate shapes, finally collapsing entirely in one direc-

tion forming a 1D chain. However, the original saddle point embedding is still

present, but is no longer the smallest eigenvectors; instead it is present in the

126

−1.5

−1

−0.5

0

0.5

1

1.5
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2−1.5−1−0.500.511.52

−3

−2

−1

0

1

2

3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Spectral Embedding, Top Spectral Embedding, Side

LLE, Top LLE, Side

Figure 7.8: Comparison of 3D embeddings of a cable knit pattern

embedding derived from the second, fifth, and sixth smallest eigenvectors. This

hints at phase transitions as the eigenvalues for certain configurations grow and

shrink over time, causing different configurations to be found as the “best” em-

bedding, even though these different configurations may be very undesirable

from the perspective of yarn geometry generation. In comparison, LLE contin-

ues to find the saddle point configuration even as the sheet becomes more and

more rectangular.

Ultimately, it seems as if unfortunately neither of these methods is ideally

suited to the task as-is. Both methods seem to need human intervention in

certain cases (for spectral embedding, finding the particular eigenvectors corre-

sponding to the embedding desired, and for LLE handling cylindrical boundary

conditions, which occur for the case of knitting in the round). A further sticking

point arises in LLE, which produces weights that are invariant to translation,

rotation, and scaling. While the first two are desirable properties to have, being

invariant to scaling means that distances may be locally distorted. This has a

particular impact on more complicated knit patterns like the cable knit shown

127

in Figure 7.8. Recall that in a cable knit, certain rows consist of interchanges,

where loops 3, 4, and 5 are pulled through loops 6, 7, and 8 in the previous row,

and vice versa (see Figure 2.3). This creates a 3D structure of cabling if repeated.

For the spectral embedded version, this 3D structure can be observed as the

interchanges cause a separation between the loops going on top and the loops

going on the bottom. In the LLE version, however, because the algorithm gen-

erates scale-invariant weights, the distances in the interchange row are longer

than they should be, and as a result there is not nearly as much separation be-

tween the top and bottom sets of loops. Although these seem like promising

ideas for generating cloth geometry automatically, future work needs to be done

to improve these issues of robustness and quality.

128

CHAPTER 8

CONCLUSION

The methods and techniques in this thesis have led to a robust and scalable

technique for simulating knitted cloth at the yarn level. The complex geometry

of knitted cloth can now be simulated directly with garment sizes significantly

larger than previous research. Validation shows that the yarn-based model re-

produces characteristics of different knits automatically, as a result of the in-

teractions and contacts between yarns, and that these features are difficult to

replicate using the common elastic sheet model. This yarn-based model can

then be accelerated by taking advantage of local temporal coherence in the con-

tacts. While an approximation, it is capable of creating visually indistinguish-

able results in a fraction of the time, allowing for character-sized garments to be

simulated in a practical amount of time.

It is hoped that this work will be especially valuable in developing new ap-

plications for the textile community, particularly for rapid design of clothing,

by allowing designers to see how knitted materials will drape and react with-

out having to actually create the material. It is also applicable anywhere visual

accuracy is of the utmost importance, such as for large, loose knits in computer

animation, where individual yarns are visible in the frame and incorrect mo-

tion may be visually distracting. Finally, the methods used to accelerate the

model may also be useful in other scenarios with similar properties—namely,

with dense and coherent contact structure. For instance, hair is another material

with a rich set of contacts which might be temporally coherent in many common

circumstances (shorter hair, no wind, etc) and which could be accelerated using

similar techniques.

From this, there is a wide range of possibilities for future avenues of re-

129

search. There is nothing that specifically limits yarn-based models to knits ver-

sus woven materials; rather, knits were considered first because of their more

obviously nonlinear dynamics, so simulating yarn-based knit models provides

a more dramatic variance from previous sheet-based methods. Other than the

nonrigid damping of Section 4.2.3, though, there is nothing in the model which

is explicitly aware of the knitted relationships in the yarn, and even that can be

easily adapted to woven fabric structure. Although the yarn interactions of wo-

ven materials produce more subtle differences from linear elastic sheet models

than knits, they are still present, and there may be cases where simulation of

woven materials requires yarn-based modeling. For example, there has already

been work on engineering applications where individual yarn behavior is im-

portant to capture for correctness, i.e. modeling bulletproof armor [45, 122, 123].

This ties into an important fact: even as computational power continues to

increase, there will still be scenarios where elastic sheet-based cloth simulation

makes more sense because the extra detail of yarn-based models are unimpor-

tant for that application and the associated extra cost excessive. For example,

elastic sheet-based cloth may be the preferred method when the clothing is far

away from the camera, or the clothing is on a character in a dense crowd, or

the application needs to be real-time. Instead, the two models can and should

coexist, and in fact interesting future work may focus on hybridizations of the

two. For instance, sheet-based and yarn-based models may be able to be used

together depending on the level-of-detail needed, where the cloth is simulated

as a sheet until the yarn-based motion is apparent, at which point yarns are

simulated directly. While this seems similar to the model reduction methods

proposed in Chapter 5, that was concerned with maintaining perceived quality

of motion at all scales, while for certain applications it may instead be suit-

130

able to look at yarn-based cloth models as a tool to add detail to existing sheet-

based simulations where desired. Yarn-based simulations could also be used as

a source of data or validation for sheet-based models; for instance, they could

allow for rapid computation of force response curves of various fabrics which

could then be plugged into a nonlinear sheet-based simulator such as the one

proposed by Volino et al. [113].

There is also additional work that can be done to improve the yarn model

itself. The absence of a complete treatment of inter-yarn friction is a notable limi-

tation, although the problem is exceedingly difficult due to the large numbers of

interrelated and distributed contacts. Friction is particularly important because

it is one of the main factors in cloth hysteresis, and while the revised non-rigid

damping and internal plasticity of Section 4.5.2 helps to allow simulated cloth

to settle in path-dependent rest states, they are just heuristics, and a full friction

model would most likely help to further improve realism and accuracy.

Although the simulator presented is coded for multicore architectures, more

and more the future of computer graphics, and computing in general, is obvi-

ously moving to manycore systems like GPUs and other highly data-parallel

vector architectures. Because of the immense size and highly parallel nature of

yarn-based simulations, the GPU seems like a perfect match for achieving addi-

tional performance gains. However, although much of the model can be moved

to a GPU implementation in a straightforward manner, other pieces require en-

gineering and simulation challenges to be overcome before yarn-based models

can be simulated easily on the GPU.

Finally, as noted in Chapter 7, additional advances need to be made in the

construction of yarn-based models. While current approaches work for sim-

ple models, the complexity of knit construction combined with the need for

131

sophisticated artistic/stylistic direction makes for a challenging modeling prob-

lem. Ultimately, this may result in multiple approaches for addressing the prob-

lem depending on requirements, with textile designers generating exact models

from knitting instructions while artists generate plausible models from stylis-

tic direction. Hopefully, though, in the future there will be a wide variety of

yarn geometries to which the techniques of yarn-based cloth simulation can be

applied.

132

BIBLIOGRAPHY

[1] Steven S. An, Theodore Kim, and Doug L. James. Optimizing cubature

for efficient integration of subspace deformations. ACM SIGGRAPH Asia,

27(5):164:1–11, 2008.

[2] Uri M. Ascher and Linda R. Petzold. Computer Methods for Ordinary Dif-

ferential Equations and Differential-Algebraic Equations. SIAM, Philadelphia,

1998.

[3] Pierre Badel, Emmanuelle Vidal-Sallé, and Phillipe Boisse. Computational

determination of in-plane shear mechanical behaviour of textile compos-

ite reinforcements. Computational Materials Science, 40:439–448, 2007.

[4] David Baraff and Andrew Witkin. Large steps in cloth simulation. ACM

SIGGRAPH, pages 43–54, 1998.

[5] David Baraff, Andrew Witkin, and Michael Kass. Untangling cloth. ACM

Transactions on Graphics, 22(3):862–870, 2003.

[6] Jernej Barbič and Doug James. Real-Time subspace integration for St.

Venant-Kirchhoff deformable models. ACM Transactions on Graphics,

24(3):982–990, August 2005.

[7] Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Ei-

tan Grinspun. Discrete viscous threads. ACM Transactions on Graphics,

29(4):116:1–116:10, 2010.

[8] Miklós Bergou, Saurabh Mathur, Max Wardetzky, and Eitan Grinspun.

TRACKS: Toward Directable Thin Shells. ACM Transactions on Graphics,

26(3):50:1–50:10, 2007.

133

[9] Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and

Eitan Grinspun. Discrete elastic rods. ACM Transactions on Graphics,

27(3):63:1–63:12, 2008.

[10] Florence Bertails, Basile Audoly, Marie-Paule Cani, Bernard Querleux,

Frédéric Leroy, and Jean-Luc Lévêque. Super-helices for predicting the

dynamics of natural hair. ACM Transactions on Graphics, 25(3):1180–1187,

August 2006.

[11] Kiran Bhat, Christopher Twigg, Jessica Hodgins, Pradeep Khosla, Zoran

Popovic, and Steven Seitz. Estimating cloth simulation parameters from

video. In Proc. SCA ’03, pages 37–51. Eurographics Association, 2003.

[12] P. Boisse, N. Hamila, F. Helenon, B. Hagege, and J. Cao. Different ap-

proaches for woven composite reinforcement forming simulation. Inter-

national Journal of Material Forming, 1(1):21–29, 2008.

[13] David Breen, Donald House, and Michael Wozn. A particle-based model

for simulating the draping behavior of woven cloth. Textile Research Jour-

nal, 64(11):663–685, November 1994.

[14] Kathryn Eleda Brenan, S L Campbell, and Linda Ruth Petzold. Numerical

solution of initial-value problems in differential-algebraic equations. Elsevier,

New York, 1989.

[15] R. Bridson, S. Marino, and R. Fedkiw. Simulation of clothing with folds

and wrinkles. Symposium on Computer Animation, 32:28–36, 2003.

[16] Robert Bridson, Ronald Fedkiw, and John Anderson. Robust treatment of

collisions, contact and friction for cloth animation. ACM Transactions on

Graphics, 21(3):594–603, 2002.

134

[17] Rui Campos, Thomas Bechtold, and Christian Rohrer. Fiber friction in

yarn — a fundamental property of fibers. Textile Research Journal, 73:721–

726, 2003.

[18] Jeffrey N. Chadwick, Steven S. An, and Doug L. James. Harmonic shells:

A practical nonlinear sound model for near-rigid thin shells. ACM Trans-

actions on Graphics, 28(5):119:1–119:10, December 2009.

[19] Yanyun Chen, Stephen Lin, Hua Zhong, Ying-Qing Xu, Baining Guo, and

Heung-Yeung Shum. Realistic rendering and animation of knitwear. IEEE

Transactions on Visualizations and Computer Graphics, 9:43–55, 2003.

[20] K.F. Choi and T.Y. Lo. An energy model of plain knitted fabric. Textile

Research Journal, 73:739–748, 2003.

[21] K.F. Choi and T.Y. Lo. The shape and dimensions of plain knitted fabric:

A fabric mechanical model. Textile Research Journal, 76(10):777–786, 2006.

[22] K.F. Choi and S.K. Tandon. An energy model of yarn bending. Journal of

the Textile Institute, 97:49–56, 2006.

[23] Kwang-Jin Choi and Hyeong-Seok Ko. Stable but responsive cloth. ACM

Transactions on Graphics, 21(3):604–611, 2002.

[24] Lillian Chu. A Framework for Extracting Cloth Descriptors from the Underly-

ing yarn Structure. PhD thesis, University of California, Berkeley, 2005.

[25] Fan Chung. Spectral Graph Theory (revised online edition). AMS,

http://www.math.ucsd.edu/ fan/research/revised.html, 1997.

[26] Gilles Debunne, Mathier Desbrun, Marie-Paule Cani, and Alan H. Barr.

135

Dynamic real-time deformations using space and time adaptive sampling.

ACM SIGGRAPH, (31–36), 2001.

[27] A. Demiroz and T. Dias. A study of the graphical representation of plain-

knitted structures part I: Stitch model for the graphical representation of

plain-knitted structures. Journal of the Textile Institute, 91:463–480, 2000.

[28] M. Duhovic and D. Bhattacharyya. Simulating the deformation mecha-

nisms of knitted fabric composites. Composites Part A: Applied Science and

Manufacturing, 37(11):1897–1915, 2006.

[29] Damien Durville. Simulation of the mechanical behavior of woven fab-

rics at the scale of fibers. International Journal of Material Forming, 3(Suppl

2):1241–1251, 2010.

[30] Bernhard Eberhardt, Michael Meissner, and Wolfgang Strasser. Knit fab-

rics. In Donald House and David Breen, editors, Cloth Modeling and Ani-

mation, chapter 5, pages 123–144. A K Peters, 2000.

[31] Bernhard Eberhardt, Andreas Weber, and Wolfgang Strasser. A fast, flexi-

ble, particle-system model for cloth draping. IEEE Computer Graphics and

Applications, 16(5):52–59, 1996.

[32] Elliot English and Robert Bridson. Animating developable surfaces using

nonconforming elements. ACM Transactions on Graphics, 27(3):66:1–66:5,

2008.

[33] O. Etzmuss, M. Keckeisen, and W. Straßer. A fast finite element solution

for cloth modelling. In Computer Graphics and Applications, 2003. Proceed-

ings. 11th Pacific Conference on, pages 244–251, 2003.

[34] Roy Featherstone. Rigid Body Dynamics Algorithms. Springer, 2007.

136

[35] C.A. Felippa. A systematic approach to the element-independent corota-

tional dynamics of finite elements. Center for Aerospace Structures Docu-

ment Number CU-CAS-00-03, College of Engineering, University of Colorado,

2000.

[36] Wei-Wen Feng, Yizhou Yu, and Byung-Uck Kim. A deformation trans-

former for real-time cloth animation. ACM SIGGRAPH, 29(4):108:1–108:9,

2010.

[37] Jie Gao, Leonidas J. Guibas, and An Nguyen. Deformable spanners and

applications. Proc. 20th ACM Symp. on Comp. Geom., pages 179–199, 2004.

[38] O. Göktepe and S. C. Harlock. Three-dimensional computer modeling of

warp knitted structures. Textile Research Journal, 72:266–272, 2002.

[39] Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and

Eitan Grinspun. Efficient simulation of inextensible cloth. ACM SIG-

GRAPH, 26(3), 2007.

[40] Herbert Goldstein, Charles Poole, and John Safko. Classical Mechanics.

Addison Wesley, 3rd edition, 2002.

[41] Naga K. Govindaraju, David Knott, Nitin Jain, Ilknur Kabul, Rasmus

Tamstorf, Russell Gayle, Ming C. Lin, and Dinesh Manocha. Interactive

collision detection between deformable models using chromatic decom-

position. ACM Transactions on Graphics, 24(3):991–999, 2005.

[42] Mireille Grégoire and Elmar Schömer. Interactive simulation of one-

dimensional flexible parts. Computer-Aided Design, 39(8):694–707, 2007.

[43] Eitan Grinspun, Anil Hirani, Mathieu Desbrun, and Peter Schröder. Dis-

crete shells. Symposium on Computer Animation, pages 62–67, 2003.

137

[44] Eitan Grinspun, Petr Krysl, and Peter Schröder. CHARMS: A simple

framework for adaptive simulation. ACM Transactions on Graphics, 21:281–

290, 2002.

[45] Bohong Gu. Ballistic penetration of conically cylindrical steel projectile

into plain-woven fabric target - a finite element simulation. Journal of Com-

posite Materials, 38(22):2049–2074, 2004.

[46] L.J. Guibas. Kinetic Data Structures. In D. Mehta and S. Sahni, editors,

Handbook of Data Structures and Applications. Chapman and Hall/CRC,

2004.

[47] Benjamin Hagège, Phillipe Boisse, and Jean-Louis Billoët. Finite element

analyses of knitted composite reinforcement at large strain. European Jour-

nal of Computational Mechanics, 14(6–7):767–776, 2005.

[48] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential Equations

II: Stiff and Differential-Algebraic Problems. Springer, New York, 2nd edition,

2002.

[49] N. Hamila, P. Boisse, F. Sabourin, and M. Brunet. A semi-discrete shell

finite element for textile composite reinforcement forming simulation. In-

ternational Journal for Numerical Methods in Engineering, 79:1443–1466, 2009.

[50] Nahiène Hamila and Phillipe Boisse. Simulations of textile composite re-

inforcement draping using a new semi-discrete three node finite element.

Composites Part B: Engineering, 39:999–1010, 2008.

[51] David Harmon, Etienne Vouga, Breannan Smith, Rasmus Tamstorf, and

Eitan Grinspun. Asynchronous contact mechanics. ACM Transactions on

Graphics, 28(3):87:1–87:12, 2009.

138

[52] David Harmon, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun.

Robust treatment of simultaneous collisions. ACM Transactions on Graph-

ics, 27(3):23:1–23:4, 2008.

[53] PM Hubbard. Collision detection for interactive graphics applications.

IEEE Trans. Visualization and Computer Graphics, 1(3):218–230, 1995.

[54] D. Hutchinson, M. Preston, and T. Hewitt. Adaptive refinement for

mass/spring simulations. In Proceedings of the Eurographics workshop on

Computer animation and simulation’96, page 45. Springer-Verlag New York,

Inc., 1996.

[55] Yuki Igarashi, Takeo Igarashi, and Hiromasa Suzuki. Knitting a 3d model.

Computer Graphics Forum, 27(7):1737–1743, 2008.

[56] Feng Ji, Ruqin Li, and Yiping Qiu. Simulate the dynamic draping behavior

of woven and knitted fabrics. Journal of Industrial Textiles, 35(3):201–215,

2006.

[57] Y. Jiang and X. Chen. Geometric and algebraic algorithms for modelling

yarn in woven fabrics. Journal of the Textile Institute, 96:237–245, 2005.

[58] Zhou Jinyun, Li Yi, Jimmy Lam, and Cao Xuyong. The poisson ratio and

modulus of elastic knitted fabrics. Textile Research Journal, 80(18):1965–

1969, 2010.

[59] Nebojsa Jojic and Thomas Huang. Estimating cloth draping parameters

from range data. In Proc. Intl Workshop on Synthetic-Natural Hybrid Coding

and Three Dimensional Imaging, pages 73–76, 1997.

[60] Jonathan Kaldor, Doug James, and Steve Marschner. Simulating cloth at

139

the yarn level. SIGGRAPH 2008 Computer Animation Festival, August

2008.

[61] S. Kawabata. The standardization and analysis of hand evaluation. The Textile

Machinery Society of Japan, Osaka, 2nd edition edition, 1980.

[62] S. Kawabata, Masako Niwa, and H. Kawai. The finite deformation theory

of plain-weave fabrics part I: The biaxial-deformation theory. Journal of

the Textile Institute, 64:21–46, 1973.

[63] P. A. Kelly. A viscoelastic model for the compaction of fibrous materials.

Journal of the Textile Institute, 2011.

[64] Lily Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun.

Numerical coarsening of inhomogeneous elastic materials. ACM Transac-

tions on Graphics, 28(3):1–8, 2009.

[65] Theodore Kim and Doug L. James. Skipping steps in deformable simula-

tion with online model reduction. ACM Transactions on Graphics, 28(5):1–9,

2009.

[66] M.J. King, P. Jearanaisilawong, and S. Scorate. A continuum constitutive

model for the mechanical behavior of woven fabrics. International Journal

of Solids and Structures, 42:3867–3896, 2005.

[67] Hua Lin, Martin Sherburn, Jonathan Crookston, Andrew C. Long, Mike J.

Clifford, and I. Arthur Jones. Finite element modeling of fabric com-

pression. Modelling and Simulation in Materials Science and Engineering,

16(3):035010, 2008.

[68] Wai-Sze Lo, Ka-Fai Choi, and T.Y. Lo. Measurement of yarn bending and

140

torsion rigidities of naturally curved yarns part 1: Monofilament yarn in

helical shape. Textile Research Journal, 80(18):1875–1886, 2010.

[69] Sebastian Martin, Peter Kaufmann, Mario Botsch, Eitan Grinspun, and

Markus Gross. Unified simulation of elastic rods, shells, and solids. ACM

SIGGRAPH, 29(4):39:1–39:10, 2010.

[70] Masaru Matsuo and Tomoko Yamada. Hysteresis of tensile load – strain

route of knitted fabrics under extension and recovery processes estimated

by strain history. Textile Research Journal, 79(3):275–284, 2009.

[71] Anne Matthews. Vogue Dictionary of Knitting Stitches. The Condé Nast

Publications, Ltd., New York, NY, 1984.

[72] Napaporn Metaaphanon, Yosuke Bando, Bing-Yu Chen, and Tomoyuki

Nishita. Simulation of tearing cloth with frayed edges. Computer Graphics

Forum, 28:1837–1844, 2009.

[73] Brian Mirtich. Timewarp rigid body simulation. In Proceedings of ACM

SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference

Series, pages 193–200, July 2000.

[74] M. Müller and M. Gross. Interactive virtual materials. In Proceedings of

Graphics Interface 2004, pages 239–246, 2004.

[75] Matthias Müller, Julie Dorsey, Leonard McMillan, Robert Jagnow, and

Barbara Cutler. Stable real-time deformations. In ACM SIGGRAPH Sym-

posium on Computer Animation, pages 49–54, July 2002.

[76] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff.

Position based dynamics. In Proc. Virtual Reality Interactions and Physical

Simulations (VRIPhys), pages 71–80. Eurographics, 2006.

141

[77] Matthias Müller, Bruno Heidelberger, Matthias Teschner, and Markus

Gross. Meshless deformations based on shape matching. ACM SIG-

GRAPH, 24(3):471–478, 2005.

[78] Ben Nadler, Panayiotis Papadopoulos, and David J. Steigmann. Multi-

scale constitutive modeling and numerical simulation of fabric material.

International Journal of Solids and Structures, 43:206–221, 2006.

[79] Matthieu Nesme, Paul G. Kry, Lenka Jeřábková, and François Faure. Pre-

serving topology and elasticity for embedded deformable models. ACM

Transactions on Graphics, 28(3):1–9, 2009.

[80] Oliver Nocent, Jean-Michel Nourrit, and Yannick Remion. Towards me-

chanical level of detail for knitwear simulation. In V. Skala, editor, WSCG

2001 Conference Proceedings, 2001.

[81] James Norbury. Traditional Knitting Patterns from Scandinavia, the British

Isles, France, Italy, and other European Countries. Dover Publications, Inc.,

New York, NY, 1973.

[82] Dinesh Pai. STRANDS: Interactive simulation of thin solids using

Cosserat models. Eurographics, 21:347–352, 2002.

[83] Jung-Whan Park and Ae-Gyeong Oh. Bending mechanics of ply yarns.

Textile Research Journal, 73:473–479, 2003.

[84] Jung-Whan Park and Ae-Gyeong Oh. Bending rigidity of yarns. Textile

Research Journal, 76:478–485, 2006.

[85] Ethan M. Parsons, Tusit Weerasooriya, and Simona Socrate. Impact of wo-

ven fabric: Experiments and mesostructure-based continuum-level sim-

142

ulations. Journal of the Mechanics and Physics of Solids, 58(11):1995–2021,

2010.

[86] F.T. Peirce. The geometry of cloth structure. Journal of the Textile Institute,

28:T45–T97, 1937.

[87] X. Q. Peng and J. Cao. A continuum mechanics-based non-orthogonal

constitutive model for woven composite fabrics. Composites Part A: Ap-

plied Science and Manufacturing, 36:859–874, 2005.

[88] D. G. Phillips, Canh-Dung Tran, W. B. Fraser, and G. H. M. van der Heij-

den. Torsional properties of staple fibre plied yarns. Journal of the Textile

Institute, 101(7):595–612, 2010.

[89] P. Potluri, S.A. Ariadurai, and I. L. Whyte. A general theory for the defor-

mation behavior of non-plain-weave fabrics under biaxial loading. Journal

of the Textile Institute, 91:493–508, 2000.

[90] Xavier Provot. Deformation constraints in a mass-spring model to de-

scribe rigid cloth behavior. Proc. Graphics Interface ’95, pages 147–154,

1995.

[91] Xavier Provot. Collision and self-collision handling in cloth model dedi-

cated to design garments. In Computer Animation and Simulation ’97: Pro-

ceedings of the Eurographics Workshop in Budapest, Hungary, September 2-3,

1997, page 177. Springer, 1997.

[92] Stephane Redon, Nico Galoppo, and Ming C. Lin. Adaptive dynamics

of articulated rigid bodies. ACM Transactions on Graphics, 24(3):936–945,

2005.

143

[93] Yannick Rémion, Jean-Michel Nourrit, and Didier Gillard. Dynamic ani-

mation of spline like objects. In V. Skala, editor, Proc. WSCG’99, 1999.

[94] Maggie Righetti. Knitting in Plain English. St. Martin’s Press, New York,

NY, second edition, 2007.

[95] Alec R. Rivers and Doug L. James. FastLSM: Fast lattice shape matching

for robust real-time deformation. ACM Transactions on Graphics, 26(3):82,

2007.

[96] Damien Rohmer, Tiberiu Popa, Marie-Paule Cani, Stefanie Hahmann, and

Alla Sheffer. Animation wrinkling: Augmenting coarse cloth simulations

with realistic-looking wrinkles. ACM SIGGRAPH Asia, 2010.

[97] Sam Roweis and Lawrence Saul. Nonlinear dimensionality reduction by

locally linear embedding. Science, 290(5500):2323–2326, December 2000.

[98] Andrew Selle, Michael Lentine, and Ronald Fedkiw. A mass spring model

for hair simulation. ACM Transactions on Graphics, 27(3):64:1–64:11, 2008.

[99] David J. Spencer. Knitting Technology. Woodhead Publishing Limited,

third edition, 2001.

[100] Dan Spielman. Spectral graph theory and its applications, a tutorial

at FOCS 2007 (http://www.cs.yale.edu/homes/spielman/sgta/), Re-

trieved Dec 2008.

[101] Jonas Spillmann and Matthias Teschner. CoRdE: Cosserat rod elements

for the dynamic simulation of one-dimensional elastic objects. Proceedings

of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer anima-

tion, pages 63–72, 2007.

144

[102] Jonas Spillmann and Matthias Teschner. An adaptive contact model for

the robust simulation of knots. Eurographics, 27:497–506, 2008.

[103] Montse Stanley. Reader’s Digest Knitter’s Handbook. Reader’s Digest, 1999.

[104] Thomas Stumpp, Jonas Spillmann, Markus Becker, and Matthias

Teschner. A geometric deformation model for stable cloth simulation. In

Proc. VRIPHYS, Nov 2008.

[105] Huiyu Sun, Ning Pan, and Ron Postle. On the poisson’s ratios of a woven

fabric. Composite Structures, 68:505–510, 2005.

[106] Daina Taimina. Crocheting Adventures with Hyperbolic Planes. A K Peters,

2009.

[107] Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. Elastically

deformable models. Computer Graphics, 21:205–214, 1987.

[108] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghupathi,

A. Fuhrmann, M.P. Cani, F. Faure, N. Magnenat-Thalmann, W. Strasser,

and P. Volino. Collision detection for deformable objects. In Computer

Graphics Forum, volume 24, pages 61–81. Blackwell Publishing, 2005.

[109] Adrien Theetten, Laurent Grisoni, Christian Duriez, and Xavier Merlhiot.

Quasi-dynamic splines. In Proc. ACM Symposium on Solid and Physical

Modeling ’07, 2007.

[110] Savvas G. Vassiliadis, Argyro E. Kallivretaki, and Christopher G. Prova-

tidis. Mechanical simulation of the plain weft knitted fabrics. International

Journal of Clothing Science and Technology, 19(2):109–130, 2007.

145

[111] J. Villard and H. Borouchaki. Adaptive meshing for cloth animation. En-

gineering with Computers, 20(4):333–341, 2005.

[112] Pascal Volino, Martin Courchesne, and Nadia Magnenat-Thalmann. Ver-

satile and efficient techniques for simulating cloth and other deformable

objects. In ACM SIGGRAPH, pages 137–144, 1995.

[113] Pascal Volino, Nadia Magnenat-Thalmann, and Francois Faure. A simple

approach to nonlinear tensile stiffness for accurate cloth simulation. ACM

Transactions on Graphics, 28, 2009.

[114] Pascal Volino and Nadia Magnenat Thalmann. Implementing fast cloth

simulation with collision response. In Proc. Computer Graphics Interna-

tional, pages 257–266, 2000.

[115] T. Wada, S. Hirai, T. Hirano, and S. Kawamura. Modeling of plain knitted

fabrics for their deformation control. In Robotics and Automation, 1997.

Proceedings., 1997 IEEE International Conference on, volume 3, pages 1960–

1965, 1997.

[116] Barbara G. Walker. A Fourth Treasury of Knitting Patterns. Schoolhouse

Press, Pittsville, WI, 2001.

[117] Huamin Wang, Florian Hecht Florian, Ravi Ramamoorthi, and James

O’Brien. Example-based wrinkle synthesis for clothing animation. ACM

Transactions on Graphics, 29(4):107:1–107:8, 2010.

[118] Huamin Wang, James O’Brien, and Ravi Ramamoorthi. Multi-resolution

isotropic strain limiting. ACM Transactions on Graphics, 29(6):156:1–156:10,

2010.

146

[119] William Warren. The elastic properties of woven polymeric fabric. Polymer

Engineering and Science, 30:1309–1313, 1990.

[120] Mingxing Xiao and Zhaofeng Geng. A model of rigid bodies for plain-

weave fabrics based on the dynamics of multibody systems. Textile Re-

search Journal, 80(19):1995–2006, 2010.

[121] Mark S. Yeoman, Daya Reddy, Hellmut C. Bowles, Deon Bezuidenhout,

Peter Zilla, and Thomas Franz. A constitutive model for the warp-weft

coupled nonlinear behavior of knitted biomedical textiles. Biomaterials,

31:8484–8493, 2010.

[122] X.S. Zeng, V. B. C. Tan, and V. P. W. Shin. Modelling inter-yarn friction

in woven fabric armor. International Journal for Numerical Methods in Engi-

neering, 66:1309–1330, 2006.

[123] G. M. Zhang, R. C. Batra, and J. Zheng. Effect of frame size, frame type,

and clamping pressure on the ballistic performance of soft body armor.

Composites Part B: Engineering, 39(3):476–489, 2008.

[124] Y. T. Zhang and Y. B. Fu. A micromechanical model of woven fabric and

its application to the analysis of buckling under uniaxial tension: Part 1:

The micromechanical model. International Journal of Engineering Science,

38(17):1895–1906, 2000.

[125] Y. T. Zhang and Y. B. Fu. A micro-mechanical model of woven fabric

and its application to the analysis of buckling under uniaxial tension. part

2: buckling analysis. International Journal of Engineering Science, 39:1–13,

2001.

147

[126] Y. T. Zhang and J. F. Hu. Buckling analysis of woven fabric under simple

shear along arbitrary directions. Textile Research Journal, 72:147–152, 2002.

148

