
Inverse-Foley Animation: Synchronizing rigid-body motions to sound

Timothy R. Langlois Doug L. James

Cornell University

Sliding..

Figure 1: Rigid-body motion from sound: Given a recording of contact sounds produced by passive object dynamics, Inverse Foley
Animation can estimate plausible rigid-body motions that have similar contact events occuring at similar times (Carton example).

Abstract

In this paper, we introduce Inverse-Foley Animation, a technique
for optimizing rigid-body animations so that contact events are
synchronized with input sound events. A precomputed database
of randomly sampled rigid-body contact events is used to build a
contact-event graph, which can be searched to determine a plausi-
ble sequence of contact events synchronized with the input sound’s
events. To more easily find motions with matching contact times,
we allow transitions between simulated contact events using a mo-
tion blending formulation based on modified contact impulses. We
fine tune synchronization by slightly retiming ballistic motions.
Given a sound, our system can synthesize synchronized motions
using graphs built with hundreds of thousands of precomputed mo-
tions, and millions of contact events. Our system is easy to use, and
has been used to plan motions for hundreds of sounds, and dozens
of rigid-body models.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Virtual Reality; I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation; H.5.5 [Information Systems]: Information Inter-
faces and Presentation—Sound and Music Computing;

Keywords: motion control, rigid-body dynamics, motion graphs, sound
design, sound rendering, sound synthesis

Links: DL PDF WEB

1 Introduction
Synchresis: “... the spontaneous and irresistible mental
fusion, completely free of any logic, that happens be-
tween a sound and a visual when these occur at exactly
the same time.” [Chion 1994]

If you hear contact sounds of an object bouncing around on the
floor, you can probably create a plausible picture in your mind of
what is happening. Unfortunately, computers and robots do not

know how to hallucinate such motions just from the sound alone.
In this work, we explore how contact sounds can be used to au-
tomatically synthesize plausible synchronized animations. Beyond
pure intellectual curiosity, there are several reasons for doing so.
Applications include low-cost sound-based motion capture, where
plausible motion can be estimated or designed using sound alone.
Sound can also help improve video-based estimation of rigid-body
motion by providing contact event times, especially for blurry im-
ages of fast moving or small objects. In computer animation and
games, synchronized contact sounds are commonly added “after the
fact,” by hand, or with event-triggered sound clips, or using digital
sound synthesis. Unfortunately, manually adding sound to complex
animated phenomena can degrade audiovisual synchronization, es-
pecially for rigid body motion, where mis-synchronized sound and
impact events can be apparent. In contrast, digital sound synthesis
can compute synchronized sound directly from the physics-based
computer animation, but it can be difficult to achieve the realism
of recorded sounds for many common objects. In this paper, we
explore an alternate computational way to ensure audio-visual syn-
chronization for physically based animation, while retaining the
richness of pre-recorded and custom-designed sound effects.

Our technique, Inverse-Foley Animation (IFA), optimizes rigid-
body animations to synchronize contact events with input sound
events. We explore this sound-constrained motion design problem
in the context of passive rigid-body dynamics (see Figure 1).

Given an input recording of contact sounds produced by a single
object, a user indentifies contact event times when simulated rigid-
body contact events likely occur. A virtual rigid-body dynamics
model is constructed that approximates the scenario in which the
sound was recorded. Since it is very difficult, if not impossible, to
optimize a rigid-body simulation’s parameters (initial conditions,
restitution, friction, geometry, etc.) to produce contact events at
the exact same times, we use the following data-driven approach.
First, stochastic sampling is used to generate a rigid-body mo-
tion database, which we interpret as a library of rigid-body contact
events (nodes) connected by ballistic rigid-body motions (edges).
To help synthesize plausible contact event sequences that match the
desired event times, we construct a contact-event graph, and intro-
duce additional transition edges between contact-event nodes with
similar attributes, e.g., similar orientation and velocity. By precom-
puting motion on a plane, we are able to globally adjust position,
and planar orientation of contact events, using suitable transforma-
tions. We blend from one post-impact trajectory to another by opti-
mizing a small impulse correction to match the subsequent contact
state, e.g., orientation. A cost function is used to penalize implau-
sible motion transitions, and to better synchronize with the sound.
Modest motion retiming is used to obtain perfect synchronization

http://doi.acm.org/10.1145/2601097.2601178
http://portal.acm.org/ft_gateway.cfm?id=2601178&type=pdf
http://www.cs.cornell.edu/projects/Sound/ifa

Motion DatabaseRigid-Body Model Contact-Event Graph

Motion Search

Input
Contact
Times

sample

Synchronized Motion

Figure 2: Overview

with the input sound. Our contact-event graph can be searched for
plausible motion paths, and supports constraints so the final con-
tact event occurs at a contact-event node which is a terminal resting
state. Additional contact constraints can be also be introduced, such
as to make an object land in a particular orientation, or to match
contact locations observed in a video capture (see Figure 14). An
overview of our approach is shown in Figure 2.

Using our approach we were able to generate plausible rigid-body
animations with realistic synchronized sound. Our system has suc-
cessfully synthesized motions for dozens of objects (see Figure 13)
and hundreds of sounds, many of which would be hard to synthesize
sounds for digitally, e.g., a scruffy bulb of garlic.

Our technique also provides a new way for animators to use sound
to design physics-based animations. Unlike in space-time keyfram-
ing or other motion control techniques, our method only requires
the user to specify time constraints on the simulation. We explored
examples of physics-based motions designed using nonphysical in-
put signals, such as timings from music scores.

2 Related Work

Event-based sound techniques [Takala and Hahn 1992] are widely
used in computer graphics to synchronize sound effects, such as
“clicks,” with animated contact events, and pre-recorded sounds are
routinely added by sound designers, or generated by foley artists, to
enhance contact events. Unfortunately, complex sounds, especially
involving multiple contact events of bouncing, sliding, rolling, chat-
tering, etc., can be difficult to synchronize with pre-generated vi-
sual events. Alternately, recent advances in physics-based sound
synthesis have enabled the generation of physics-based animations
with various synchronized contact sounds [van den Doel et al. 2001;
O’Brien et al. 2001; Chadwick et al. 2009; Zheng and James 2010;
Chadwick et al. 2012]. Unfortunately, despite perfect synchroniza-
tion, generating realistic physics-based sound models can be hard
for natural sounds, such as a crumpled paper ball, or a thin plastic
shell, hitting a specific wooden surface. In contrast, we leverage
natural recorded sounds, and explore ways to optimize audiovisual
synchronization using motion control.

Inverse-Foley Animation can be viewed as a spacetime optimiza-
tion problem [Witkin and Kass 1988; Cohen 1992] involving rigid-
body motion laws and frictional contact physics, but devoid of other
spatial constraints. Unfortunately this motion estimation prob-
lem is extremely underconstrained and mathematically ill-posed,
which complicates convergence for nonlinear optimization meth-
ods. Prior methods for motion design have leveraged the ability of
humans to interactively navigate the space-time solution space of
rigid-body contact events to obtain desired motions [Popović et al.
2000]. Unfortunately, they do not appear suitable for navigating
time-only constraints efficiently, and while their derivative-based
search methods could be used to optimize a sequence of contact
times, they are inherently local methods whereas future contacts
are easily created/destroyed when optimizing initial conditions and
contact force perturbations. Motion sketching has been proposed
to help animators estimate plausible motions they desire [Popović
et al. 2003], which exploits the sketch to provide a good initial

guess to help nonlinear optimization methods converge. In con-
trast, Inverse-Foley Animation is essentially a time-based sketch,
which lacks spatial information to help nonlinear optimization.

Random sampling techniques have been used to explore the space
of initial conditions and other simulation parameters, that could
produce desired outcomes [Tang et al. 1995]. Barzel et al. [1996]
introduced the idea of plausibility for animations, arguing that there
can be many acceptable simulations. Markov chain Monte Carlo
(MCMC) has been used to sample animations satisfying specified
constraints [Chenney and Forsyth 2000]. Similar sampling methods
can be used to optimize contact-event times, however downsides
are that optimization times can be long, and that some methods
(such as MCMC) require extensive parameter tuning. In addition,
we found that forward sampling methods have a hard time hitting
all of the contact event times, necessitating frequent restarts, and
that it can be very hard to find plausible contact events that lead
to terminal (zero energy) contact states at the desired times using
forward search. Sampling reverse-time rigid-body motion might
be better suited to this latter case, however the ill-posed nature of
reverse-time motion poses its own challenges [Twigg and James
2008], and sampling multiple time-based constraints is still diffi-
cult. Many-Worlds Browsing [Twigg and James 2007] allows users
to efficiently explore large numbers of sampled rigid-body simula-
tions using a ranking interface, interactive browsing methods, and
user-guided adaptive contact-force sampling, but does not provide
any specific tools for global optimization of motion synchronization
to find those needle-in-a-haystack simulations. In contrast, given
an input sound, our contact-event graph can search a contact-event
database to estimate synchronized motions. By using blending and
time warping, our system can find plausible solutions even when
the time constraints are hard (or infeasible) to satisfy.

Our use of contact-event graphs are closely related to “motion
graph” techniques used to animate characters using motion-capture
databases [Kovar et al. 2002; Lee et al. 2002; Arikan and Forsyth
2002]. Prior work did not explore motion graphs for single rigid
bodies since their motion is easy to compute, and other methods
exist for rigid-body control. In contrast, we consider a graph of
rigid-body contact events to optimize contact times efficiently. Like
motion graphs, we also exploit the planar nature of motions in our
database to freely orient and position contact events on the plane.
There are several differences between contact-event graphs and tra-
ditional motion graphs. Motion graphs typically transition between
each frame, whereas contact-event graphs transition between con-
tact events, with edges representing rigid-body free flight. Also,
motion graph techniques often rely on ensuring the graph is con-
nected, so arbitrarily long streams of motion can be synthesized. In
passive rigid-body motion, energy is lost during each contact, so we
may not expect to revisit states, and arbitrarily long streams of mo-
tion are not possible without accumulating large transition errors.

Synchronization has also been studied in work on aligning anima-
tion with sound and music. Cardle et al. [2002] analyzed input
MIDI scores, and transformed keyframe animation curves to im-
prove synchronization. Kim et al. [2003] extracted motion beats
from input motion data, used these motion beat examples as nodes
in a movement transition graph, and traversed the graph to syn-

thesize motion that aligned to an input MIDI signal. Lee and
Lee [2005] used a “music graph” and retiming techniques to mod-
ify background music and animation curves simultaneously. In
constrast, our contact-event graph method is heavily constrained
by rigid-body contact physics. We also use time-warping tech-
niques [Bruderlin and Williams 1995] but only to adjust simulated
contact-event times to better match an input sound track.

In computer vision, the estimation of ballistic rigid-body motions
can be challenging for fast motions and nonsmooth trajectories due
to contact [Yilmaz et al. 2006], and physics-based models can im-
prove motion tracking [Duff et al. 2011]. For example, Bhat et
al. [2002] estimate ballistic rigid-body motion from video using
an optimization method that exploits the smoothness of free-flight
motion to track translational and rotational motion. In contrast,
we use sound to constrain contact event times of nonsmooth rigid-
body motions, possibly with position-level contact constraints from
video, but with different yet plausible free-flight motions.

3 Input Contact-Event Specification

Given an input sound or other signal (e.g., MIDI events) for which
we wish to find a synchronized animation, we first identify the tim-
ing and amplitudes of “contact events” in the audio stream. Unfor-
tunately, identifying contact events robustly and automatically for
arbitrary contact sounds, or other creative inputs, is a tricky prob-
lem, and we therefore rely on the user to provide the following in-
formation to the motion synthesis system.

Contact-time signature of sound: The user provides the follow-
ing contact-event attributes:

• the target contact event times, t̄1, . . ., t̄n, associated with the
approximate beginning of each of n significant contact events.
Without loss of generality we assume that t̄1 =0.

• the rough duration of each contact event, ∆t̄k. “Discrete”
contact events, such as bouncing, which have no significant
contact duration are given a zero duration. Longer and more
complex “continuous” sequences of contact events, such as
sliding or rapid sequences of micro-collisions at the end of
motions, are given a nonzero duration (see Figure 3).

These times and durations indicate when contact activity should oc-
cur in the animation, and are determined by the user listening to the
sound, and marking it in a sound visualization tool, such as Audac-
ity. We refer to the list of significant contact event times and their
durations as the contact-time signature, T̄ = {(t̄k,∆t̄k)}k=1..n.
In practice, it takes less than a minute to identify contact events for
a given input sound. Please see Figure 4 for examples of annotated
contact sounds used in our system.

Bolt CoffeeCup Garlic BeerCanCrushed

Figure 3: Simulated continuous contact events synchronized to
input sounds: a sliding bolt, a chattering coffee cup, the scruffling
of a rolling garlic bulb, and spolling of a crushed beer can.

The last contact event, n, is flagged as being a terminal contact state
(i.e., a stable, zero-energy, rest state), or not. If not, then the syn-
thesized motion can “bounce” out of the final contact event, instead
of having to come to rest.

Figure 4: Input sound with user-annotated contact-event times.

Contact event amplitudes: Given the user-annotated sound sig-
nal, we can automatically estimate contact event amplitudes, ā1,
. . ., ān, from the sound signal. For a discrete event at time t̄k,
we set the amplitude āk to be that of the nearest peak in a small
time window—we use 20 ms in our setup. For continuous events,
we use the amplitude values in the continuous region which the
user selected. Assuming contact event k is s samples long, we
refer to the amplitude in the j th bin as āk[j]. To normalize the
amplitudes, we divide through by ā1, such that hereafter we as-
sume that ā1 = 1 (if the first event is continuous, we normalize by
max ā1[j], j = 1, . . . , s).

4 Rigid-Body Contact Problem

We seek to estimate motion for a single dynamic rigid body un-
dergoing a sequence of contact events with a planar environment.
In this section we define the rigid-body problem, notation, and its
contact-time signature used to optimize synchronization.

Preliminaries: Rigid body dynamics is standard in computer
graphics, and we refer the reader to an appropriate reference [Ben-
der et al. 2013]. We will assume that the surface of the object,
Γ, is approximated by a triangle mesh. The rigid-body motion is
described by the following variables. The body has mass m, and
body-space inertia tensor I . Let the position of its center of mass
be x, its orientation given by the quaternion q, the linear velocity
by v, and the angular velocity is denoted by ω. The rigid-body po-
sition is p = (x, q), its velocity is v = (v,ω), and the total state is
given by ψ = (p,v). Gravitational acceleration is g. In our imple-
mentation, rigid-body motions were simulated using the Open Dy-
namics Engine (ODE), with contact modeled as a non-penetration
constraint and solved as a velocity-level LCP. For planar contact,
the convex-hull of each object model was used for rapid simula-
tion.

Contact Events: For simplicity, assume that the environment is a
single infinite plane, and that the rigid body undergoes passive mo-
tion under gravity that leads to sound-producing contact events with
the plane (see Figure 5). We denote the times of these contact events
by t1, t2, . . ., tn for a sequence of n contact events, and again we
are free to assume that t1 = 0. These events may be either what
we will call “discrete contact” events, such as bouncing impact, or
longer “continuous contact” events, such as rolling, sliding, or rapid
chattering. In either case, let tk denote the starting time of the kth

event; denote the time immediately before the contact event by tk−
and immediately after by tk+. Denote the position at the start of
the contact event by pk, the pre-impact velocity by vk− = v(tk−),
and the post-impact velocity by vk+ = v(tk+). For discrete con-
tact events, such as bouncing, we can often assume without loss of
generality that the event is instantaneous, i.e., tk− ≈ tk+, however,
in practice, the contact event may last one or more time steps de-
pending on the type of integrator or contact resolution method used.
In contrast, for continuous events, contact forces exist for a longer
period of time, with tk− < tk+. We denote the rigid-body state
immediately before impact by ψk− and the state immediately after
impact by ψk+.

Contact-time signature of motion: In order to simplify com-

Figure 5: Contact Sequence

parison with other sounds and signals, we use a contact-time sig-
nature to summarize the rigid-body animation contact event se-
quence. Analogous to the contact-time signature for the input
sound, T̄ , we can define a contact signature for the simulation, T ,
that consists of the contact start times, tk, and the contact duration
∆tk = tk+− tk−. Ideally one could search the simulation space to
find motions with matching contact-time signatures, T = T̄ . How-
ever, the raw simulation output is noisy, and requires some filtering
before direct comparison to the simplified user-specified T̄ . With-
out loss of generality, assume a fixed time step integrator, and con-
sider the sequence of rigid-body contact impulses whose two-norm
magnitude is given by fi ≥ 0 at time step i = 1 . . . N . Based on
this contact impulse data, we can generate an initial noisy version
of T , which we then filter as follows (see Figure 6).

Im
pu

ls
e

Figure 6: Filtering the simulation’s contact-time signature:
There is a discrete event at time t1. Several close events are grouped
into one event between times t2− and t2+. There is a continuous
event between times t3− and t3+. The resting contact at the end,
denoted by the dashed line, is clipped.

First, we filter T to remove small gaps between events by merg-
ing adjacent contact-event intervals that are separated by less than
a small amount δt; in our implementation, we use δt = 10 ms. For
example, if [t−, t+] and [t′−, t

′
+] are adjacent (with t∗ < t′∗), we

will merge them to form [t−, t
′
+] iff t′− − t+ < δt. Contact events

are renumbered accordingly after a merge. Note that this merg-
ing process creates longer “continuous” contact events that contain
multiple micro-collision events.

Second, we filter T to detect discrete (short-lived) impact events.
Contact events with duration below a specified duration δt are re-
placed by zero-duration discrete events: if ∆tk < δt then we set
∆tk = 0. In our implementation, we used δt=10 ms for most ex-
amples; however, we used δt=30 ms for the BeerCan, Garlic, and
Nut, to ensure the continuous sounds of those objects were treated
as continuous events, and not broken up into many microevents.

Third, continuous contact events (with ∆t > 0) can require addi-
tional filtering, since final resting states have nonzero contact im-
pulses for which no contact sound will be produced. We therefore
detect resting contact states using a velocity criterion, and clip the
final resting-contact time interval appropriately, i.e., [tn−, tn+] →
[tn−, t

′
n+] for t′n+<tn+.

Finally, contact-impulse amplitudes ak are accumulated along the
way for contact events in T . These are computed as the two-norm
of all contact impulses fi associated with each contact event. Given
the importance of relative amplitude changes, we normalize all am-
plitude variations such that a1 = ā1 = 1. Note that simulated

impulse amplitudes ak and contact sound amplitudes āk are very
different quantities and can not be directly compared, e.g., to re-
quire “ak= āk.” Given the different nature of impulses and sound,
these comparisons can only be used to very roughly specify when
large or small impacts occur. Note that this normalization is always
computed based on the first event in the motion path, which is not
always the first event in the simulation (see § 5).

Synchronized motion problem: The central problem we solve is
to find a plausible rigid-body motion which is synchronized with
the input sound, in the sense that the sound’s T̄ is equal (or close)
to the simulation’s T , and that the relative amplitude variations are
similar. Given that the first contact is always synchronized (since
t̄1 = t1 = 0 and ā1 =a1 = 1), we essentially have n − 1 remaining
contact events to synchronize. The parameters to be optimized are
the initial conditions of the initial impact ψ1−, as well as small con-
tact impulses that can perturb each contact event. While other simu-
lation parameters are also uncertain, such as the rigid body’s shape,
mass, etc., as well as the contact friction and restitution properties,
for simplicity we will assume that these are fixed and specified rea-
sonably by the user.

5 Contact-Event Graph Approach

We use a data-driven approach to approximate solutions to the syn-
chronized motion problem. Given the prevalence of flat surfaces
in our environments, our method is optimized to find synchronized
motions of a single rigid body in a planar environment.

5.1 Sampling Rigid-Body Motions

We construct a database of rigid-body contact events by
simulating thousands of rigid-body contact sequences as fol-
lows. We randomly sample the pre-contact state of the object,
(x1−, q1−,v1−,ω1−), at the time of first contact. Given trans-
lation invariance of the planar environment, it is sufficient to select
any center-of-mass position x1− above the contact plane. We then
sample a random quaternion orientation q1− [Kuffner 2004] (Fig-
ure 7a). The object is then pushed down into contact with the plane
by finding the minimum-height vertex on the object (Figure 7b).
The pre-contact velocities are sampled as follows (Figure 7c). The
direction of the linear velocity v1− is importance sampled from the
lower hemisphere (so that the velocity is into the plane) with a co-
sine distribution about the normal used to emphasize more vertical
directions1; the magnitude ‖v1−‖2 is uniformly sampled (we use
[0.5, 4] m/s). Angular velocities are nonuniformly sampled from
within a 3-ball; we sample a random direction ˆω1−, then uniformly
sample the magnitude (we use [0, 20] rad/s) so as to bias the magni-
tude toward zero to avoid too many motions with rapidly spinning
initial conditions. Using these initial pre-contact conditions, the
simulation is run forward until the object comes to rest (Figure 7d).
To obtain pre-contact ballistic motion to animate motion for t < t1,
we integrate the initial state backwards in time until an earlier con-
tact is found (Figure 7e); we simply forward integrate the rigid-
body with negated-velocity initial conditions, (p1,−v1−). This
process is repeated as many times as necessary to create a database
of simulations. Note that given translational invariance, this mo-
tion sampling problem has 3 rotation and 6 velocity degrees of
freedom; further exploiting planar rotational invariance yields an
8-dimensional sampling problem.

1For most example objects, dropping was the natural motion, so we only
sampled the lower hemisphere up to 30o from vertical. For the Nut and Bolt,
where rolling motions were common, we sampled up to 80o from vertical.

(a) (b) (c)

(d) (e)

Figure 7: Motion Sampling: To sample initial simulation param-
eters, we (a) sample a random orientation, (b) push the object into
contact, (c) sample linear (red) and angular (blue) velocities, (d)
simulate forwards until the object comes to rest, and (e) simulate
backwards to obtain pre-contact ballistic motion.

5.2 Contact-Event Graph Construction

The motion database is turned into a contact-event graph where
each node represents a contact event, and edges represent inter-
contact motions that transition between these contact states (see
Figure 8). The weight on each edge represents how expensive each
transition is, which measures both rigid-body contact state errors,
as well as synchronization errors when used for a specific contact-
event time.

Figure 8: Contact nodes and edges: Nodes represent contact
states, and edges represent transitions between these states. Solid
arrows are physically simulated transitions, and dotted arrows are
transitions we can make by computing a motion connection.

For each of the randomly simulated motions, we compute the fil-
tered contact-time signature, T , associated contact states (see §4),
and contact amplitudes. Each rigid-body simulation is abstracted
as a sequence of contact-event nodes connected by edges which
represent connecting trajectories. Terminal nodes represent contact
states that bring the object to rest, and they are used exclusively to
synchronize with terminal events in the input contact-time signa-
ture.

5.3 Motion Transitions

Given two motions which have similar contact events (similar
post-contact velocity, orientation, etc.), we now describe how to
smoothly transition from one motion to the other (see Figure 10).

Figure 10: Transitions: Given two simulated contact sequences
ψi → ψi+1 and ψj → ψj+1, we can transition from ψi to ψj+1 by
registering ψj to ψi and computing a motion connection.

5.3.1 Registering contact events

To evaluate contact state similarity (for edge weight determination)
or to evaluate a motion transition, we exploit translational and ro-
tational invariance on the plane to rigidly register contact events,
thereby increasing the fit quality. To register two contact states i and
j, we can transform state j to better match i by performing a planar
registration of the two contact states at the post-contact times, ti+
and tj+ (see Figure 9). The rigid transformation involves (1) a 2D
translation that best aligns the center of masses of the two bodies,
and (2) a planar rotation that best aligns the orientations, qi+ and
qj+. There is an analytical formula for this rotation [Shin et al.
2001].

5.3.2 Motion Connections

Given two similar contact states i and j, which we assume are reg-
istered, we can smoothly transition from state i to state j + 1 by
computing a modified rigid-body trajectory that connects the states.
However, unless these two motions are very similar, directly in-
terpolating the rigid-body trajectories through time, e.g., using ro-
tational slerp or other methods for SE(3) interpolation [Belta and
Kumar 2002; Hofer and Pottmann 2004], can introduce nonphysi-
cal distortion for motions with very large and/or different angular
velocities. Instead, we propose a different approach that involves
computing a perturbation to the ith post-contact momentum, so that
the resulting motion matches the (registered) position and orienta-
tion at j + 1. In our implementation, we compute momentum per-
turbations separately for the linear and angular components given
the over-constrained nature of the boundary value problem.

Given two registered discrete-event contact states, i and j, we eval-
uate the ballistic trajectory connecting i to k = j + 1 by evaluating
their linear and angular motions as follows. Without loss of gener-
ality, assume that contact events i and j both end at time t = 0, and
impact k occurs at time T later. In our system we set T = Tj .

Linear Motion Connections: Linear blending is relatively sim-
ple, and is performed by computing the post-impact linear veloc-
ity required for the object’s center of mass, starting at xi+, to
end up at xk− at time T later. It can be computed directly as
vblend=(xk− − xi+)/T − Tg/2, and is simply a modified vi+.

Angular Motion Connections: The angular motion connection is
slightly more involved. Denote the post-contact angular momen-
tum (which is preserved over the ballistic trajectory) by Li+ and
Lj+, respectively. We seek to find an angular motion trajectory
that has initial orientation qi+ at t = 0, and attains the final ori-
entation qk− at t = T . There are many possible solutions to this

(a) (b) (c) (d)

Figure 9: Contact Registration (top down view): (a) To transition from state ψi to state ψj+1, we register state ψj to state ψi. (b) First a
planar translation is applied to align ψj with ψi. (c) Then a planar rotation is applied to minimize the orientation error between ψi and ψj .
(d) Then we can evaluate the transition from ψi to ψj+1.

boundary value problem, and we use a forward shooting method
that starts at qi+, then seeks to hit qk− while keeping the initial
angular momentum close to that of the original motions. Specifi-
cally, we seek a free-flight rigid-body angular motion that has an
initial angular momentum near the average of the two momenta,
L = (Li+ + Lk−)/2 + ∆L, where ∆L is a correction, such
that ||∆L||2I−1 = ∆LT I−1∆L = ∆ωT I∆ω is ideally small.
We define an endpoint orientation error using the quaternion er-
ror function f(∆L) = | log

(
q(T,∆L)q−1

1

)
|2 where q(T,∆L) is

computed by integrating Euler’s angular equations of motion for
the rigid body. By linearizing f(∆L) ≈ f(0) + J ∆L, where
J = ∂f

∂∆L
∈ R1×3 is the Jacobian (which we compute using for-

ward differences), we can write the Newton’s method update (with
weighting) as ∆L = WJTλ, then determine λ so that f = 0,
and thus obtain ∆L = −WJT (JWJT)−1f(0). The weighting
matrix W is set to the inertia matrix I , thus giving extra momen-
tum to heavy axes. When doing the Newton step, we damp the
updates to avoid large angular changes which could lead to insta-
bilities. We use a simple model to reason about angular changes,
∆θ ≈ ||∆ω||T = ||I−1∆L||T ; in our implementation, the ∆L
update is scaled so that ∆θ is less than 10o. In rare cases where
Newton’s method does not converge, we simply discard the edge.

Time Warping: Any transition edge can be slightly re-timed to
match the target inter-contact time T using time warping [Bruderlin
and Williams 1995], however in practice only very limited retiming
is used since this can lead to significant distortions. In practice
we are able to achieve target times by keeping retiming effects less
than 30%. Note that any retiming is done after blending to avoid
retiming the equations of motion.

5.4 Edge weights for inter-contact transitions

Transition errors can be divided into two types: (1) static errors for
motion, which include velocity and orientation differences; and (2)
dynamic errors for sound synchronization, which include retiming,
amplitude errors, and whether the event is terminal or not. Static
errors depend only on the contact events from the database, whereas
dynamic errors are input-sound related and depend on the target
contact signature being matched.

Transition quality is measured by a factored edge weight model:

w = fvfqftfsfEfend (1)

where the affinity factors f∗ correspond to velocity match (fv),
quaternion/orientation match (fq), time warping to ensure synchro-
nization (ft), contact sound/force similarity (fs), energy limiter
(fE), and terminal events (fend). Higher edge weights correspond
to better transitions. We now describe these factors, and the tuned
parameters used in all of our examples.

Post-contact velocity similarity is assessed based on the simulated
velocity change ∆vi = vi+ − vi− (see Figure 11), and ∆ωi =
ωi+ − ωi−. We define plausibility parameters which represent

Figure 11: Static state comparison: (Left) The plausible region
for velocities depends on the magnitude and direction of ∆vi.
(Right) Orientations are compared based on the smallest angle of
rotation between the two states.

the maximum plausible angle change for the linear (θL) and angu-
lar (θA) velocities, and the maximum plausible relative magnitude
change for the linear (φL) and angular (φA) velocities. Inspired by
O’Sullivan et al. [2003], we use θL=20o, φL=0.4, and φA=0.2;
for θA, we set θA = 10o. We evaluate the velocity similarity be-
tween two states using a weighted squared magnitude. We first
compute rotations RL and RA, which rotate ∆vi and ∆ωi to
(1, 0, 0), respectively, and compute

veval =

(
RL(vblend − vj+)
RA(ωi+ − ωj+)

)
.

We evaluate the magnitude of veval using a scaling matrix which
sets the magnitude to 1 at the edge of the aforementioned plausible
region: defining the diagonal matrix,C−1 =diag(a, b, b, c, d, d),

a = φL‖∆vi‖ b = φL‖∆vi‖ tan(θL)

c = φA‖∆ωi‖ d = φA‖∆ωi‖ tan(θA) (2)

we set
fv = e−‖Cveval‖2 . (3)

The Gaussian halfwidth occurs at ‖Cveval‖2 ≈ 0.69, and so val-
ues outside our “plausibility” region (‖Cveval‖2 > 1) are unlikely.

Orientation error is important because it affects how much blend-
ing will be necessary to perform the transition. The exact plau-
sibility parameter is difficult to quantify, due to the non-linearity
of the equations of motion, as well as the fact that the amount of
blending required also depends on the velocity similarity and length
of the transition. The amount of acceptable orientation difference
also depends on the length of the transition, since large differences
for short transitions could require large connection impulses. We
examine the similarity as a rate of angle difference per unit time.
Letting θ = | log(qiq

−1
j)|, we set

fq = e
−cq max

(
θ2

T2 ,
θ2

T2
0

)
(4)

where cq = 0.85 and T0 = 0.2 (this sets the Gaussian halfwidth to
θ
T

= 0.9 when T < T0, and limits the halfwidth to θ
T0

= 0.9 when
T ≥ T0, which is about 10o).

Figure 12: A continuous contact event (MetalCup desk 02): Us-
ing the sound amplitude (shown at bottom) and force amplitude
centroids, we not only synchronize its initial impact (Left), but, as
the mug rolls (Middle), also the later handle impact (Right).

Time warping improves synchronization, and its excessive use is
penalized by the ft factor. Given the goal duration of the inter-
contact trajectory, T ∗, and the blended trajectory time, Tb, we use

ft = e−ctT
2
eval where Teval =

(
max(T ∗, Tb)

min(T ∗, Tb)
− 1

)
, (5)

with ct = 100. This sets the Gaussian halfwidth to 7% retiming,
and ensures that retiming errors beyond 15% are unlikely.

Target event sounds and contact forces are compared using 3
weights. Significant differences in relative amplitudes of the con-
tact sound ā and the simulated contact force a are penalized using
the amplitude factor

fa = e−ca|ā−a|
2

(6)

where ca = 2.78, which sets the halfwidth to 0.5. The difference
in continuous event lengths, ∆t1 and ∆t2, is measured using

fl = e−c∆|∆t1−∆t2|2 ; (7)

we use c∆ = 7000, setting the halfwidth to 0.01 seconds. To bet-
ter synchronize amplitudes within continuous events, e.g., near the
start or the end (see Figure 12), we match the centroid time of the
sound event amplitude distribution, a[k], (or contact force ampli-
tude, ā[k]) as τa = (

∑n
k=1 a[k]k∆t)/(

∑n
j=1 a[j]) (similarly, τā

for ā[k]). Given the event’s sound and force centroid times, τa and
τā, respectively, we compare them using the factor

fc = e−c∆|τa−τā|
2

. (8)

The sound comparison affinity factor is the product of the 3 weights,

fs = faflfc. (9)

For discrete contact events (where ∆t ≈ 0), only fa contributes.

Spurious energy gains are avoided by further restricting transitions.
The energy of a state immediately before (-) or after (+) the ith

contact event is given by

E(ψ±i) =
1

2

(
m‖v±i ‖

2 + (ω±i)T Iω±i

)
+mgh±i

where h±i is the height of the object’s center of mass. To discourage
transitions to higher energy states2 we set

fE =

{
1, E(ψ−i) > E(ψ+

j),

0, otherwise.
(10)

2We found that requiring E(ψ+
i) > E(ψ+

j) can be too restrictive, es-
pecially if the rigid-body model’s restitution value is too low.

Terminal nodes are used for the final contact event if the object is
required to come to rest, and this is achieved by the fend factor: if
we are currently considering transitions from event m in the target
sequence T̄ , then

fend =

{
1, if (m not terminal) XOR (state j + 1 is terminal),
0, otherwise.

(11)

5.5 Searching for Synchronized Motions

Walks in the graph correspond to synthesized rigid-body contact
sequences. Edge weights are defined such that larger edge weights
correspond to good transitions. We define the path quality (or score)
as the product of the edge weights, instead of the sum. Conse-
quently a motion path can obtain a bad (near zero) score if there ex-
ists one rather implausible transition (with near zero edge weight).
Given the large search space, we find walks in the graph using a
branch and bound technique similar to [Kovar et al. 2002], utilizing
a k-d tree to quickly find the closest (best transition) events to the
event we are currently at. If the input time signature has only one
event, we can simply select a terminal event and its incoming mo-
tion. More generally, for n > 1 contact events, we find a feasible
node synchronized with the second contact event at t̄2 by consider-
ing all events i, where Ti−1 is close to (t̄2−t̄1). Subsequent contact
events are found by considering sub-paths of bounded search depth,
e.g., the next 5 contact events, using a branch and bound technique.
Edges are explored in order of weight, with the best ones being ex-
plored first. Given the best bounded-depth sub-path, we retain only
the next two contact events, advance the contact-event search hori-
zon, and repeat the process. As we approach the nth terminal node,
we restrict the search to include feasible subpaths, i.e., ones that
have “terminal nodes” at the nth contact event.

Finding nearest neighbors: We use two 12-dimensional k-d trees
to quickly find potential transitions. One of the trees stores ter-
minal events, the other stores non-terminal events. For an event
j, the dimensions are Tj−1,∆tj ,vj−1+ (6 dimensions), the three
angles (θ1, θ2, θ3) that the rigid body’s principal axes make with
the contact normal, and the centroid time τj of the contact event.
Denoting a point in the tree by p =
(p1, . . . , p12), we use a scaled L2 dis-
tance when searching for nearby points:
dist(p, p′)=

∑12
i=1 s

2
i (pi−p′i)2,with the scal-

ing factors si set to 1
halfwidth

of the corre-
sponding edge weight affinity factor. When
searching for neighbors of event j, the co-
ordinate distance for the inter-contact time (T) is normalized
by Tj−1, and the principal axes distances are normalized by
min(Tj−1, 0.2sec). The scaling of the velocities is slightly more
involved because the plausible region is based on ∆vj−1, which
is not always axis aligned. We first create a bounding box of the
quadric described in (3). The box is centered at 0, and has edge
half-lengths a, b, b (see (2)). The bounding box is rotated by R−1

L ,
which aligns it with ∆vj−1. The axis-aligned bounding box of
the rotated original bounding box is computed, and has edge half-
lengths x′, y′, z′. These half-lengths are then used to normalize the
velocity distances. Angular velocities are treated similarly. Note
that the k-d trees only need to be constructed once. The scaling in
the distance function allows the distances to be adjusted depending
on the query point.

Motion Score: The optimizer searches for paths that maximize
the product of edge weights. To report a normalized motion score
for humans (independent of the number of contacts), we define a
motion’s Score as the geometrically averaged affinity factor values

AdjustableWrench BeerCanCrushed Bolt

Carton CoatHanger CoffeeCup

CreditCard d4 d6

d8 d10 d12

d20 Dustpan Eraser

FruitBasket Garlic Keyboard

Lego2x2 Lego2x4 MetalCup

Nut PaperBall PlasticContainer

PlasticSpoon TapeDispenser Wrench

Figure 13: Virtual models (left) and real-world objects (right) used in over 434 IFA experiments.

over the n-contact motion sequence,

Score = (
∏
i

fvfqftfaflfc)
1

6n . (12)

To shed light on motion quality, we also report the Score indepen-
dent of the sound amplitude factors,

Scorew/o sound = (
∏
i

fvfqft)
1

3n . (13)

Optional speedups: Since searching large contact-event graphs
can be slow, we use several optional speedups. To avoid spend-
ing time exploring obviously poor transitions, we only explore
edges where log(fv) > −10 and log(fq) > −10. Furthermore,
we use the k-d tree to quickly find and search only the best 5
children/transitions of each node, thereby reducing the number of
transitions that must be considered during the branch-and-bound
search. For each recorded sound, we also use an “early exit” condi-
tion, that terminates the search (and returns the found motion) if the

Score is sufficiently high; in our examples, we “early exit” if Score
≥ 0.3. We also enforced a maximum search time of 1 hour to time
out on potentially infeasible problems.

Lazy evaluation of blends: We do not actually compute blends
for edges during the graph search, to avoid the cost of computing
blends for non-simulation edges in the graph, which is potentially
very high, e.g., in graphs with hundreds of thousands of edges can
require many hours of Newton solves. In practice, we only require
blends for edges used in the final animation. Some transitions can
introduce ground interpenetration when blending sufficiently dis-
similar motions. Since interpenetration can be perceptually both-
ersome it is not allowed. We initially assume that all edges are
feasible, and then once we find an optimal sub-path we compute
its blends, then if any edges are infeasible we discard them and
recompute the optimal sub-path. In practice, blending costs are re-
duced enormously, and the search is still fast since very few edges
are infeasible. We note that blends depend only on the motions,
and not the input sound. While they could be precomputed, this

would require much longer precomputation and more storage for
the database.

6 Results

We recorded multiple sounds from 27 real-world rigid objects on
multiple surfaces, for a total of 434 sound recordings. For each ob-
ject, a virtual proxy model was created, with the geometry, mass
properties, and contact restitution behavior set to produce a similar
likeness. The objects and models are shown in Figure 13. Our sys-
tem was able to synthesize plausible synchronized motions for all
of the objects, and almost all of the sounds. Please see the accom-
panying video for all audiovisual results and Scores. Statistics are
provided in Table 1; all timing statistics are run on a machine with
four Intel Xeon 7560 processors at 2.27GHz. Note that we use the
same hand-tuned edge-weight parameters in all cases, so no extra
parameter tuning was required.

Rigid-body Model nodes n success search Score
AdjustableWrench (desk) 2556981 5.5 13 / 13 0.9 0.43
BeerCanCrushed (wood) 1462089 2.9 15 / 15 0.6 0.35
Bolt (desk) 2604880 5.6 7 / 7 14.5 0.25
Carton (desk) 1282526 4.1 25 / 29 1.3 0.32
CoatHanger (desk) 4759056 6.4 18 / 19 9.3 0.46
CoffeeCup (desk) 5710615 7.1 15 / 16 38.2 0.24
CreditCard (desk) 1965526 4.4 22 / 23 6.8 0.44
d4 (desk) 3750746 15.7 6 / 10 62.7 0.17
d6 (desk) 6751058 20.4 13 / 14 12.1 0.41
d8 (desk) 4867818 22.0 6 / 12 53.9 0.27
d10 (desk) 7623610 25.7 11 / 14 18.6 0.38
d12 (desk) 9934621 26.0 4 / 7 24.2 0.39
d20 (desk) 9427739 26.8 9 / 10 37.7 0.31
Dustpan (wood) 4520601 6.7 6 / 6 21.9 0.37
Dustpan (carpet) 2629017 2.5 4 / 6 6.5 0.21
Eraser (desk) 2003606 4.6 47 / 48 2.1 0.50
FruitBasket (wood) 1697917 4.6 7 / 7 0.3 0.45
FruitBasket (carpet) 1705726 4.0 7 / 10 0.4 0.43
Garlic (wood) 876191 4.5 6 / 6 2.6 0.24
Keyboard (carpet) 2366495 5.9 8 / 9 11.4 0.30
Lego2x2 (desk) 4065133 9.3 9 / 9 16.3 0.36
Lego2x4 (desk) 3994256 8.0 23 / 23 8.8 0.41
MetalCup (desk) 4252157 12.8 6 / 6 22.1 0.32
MetalCup (carpet) 2378823 3.4 9 / 10 3.3 0.26
Nut (desk) 3790909 8.3 9 / 10 12.1 0.33
PaperBall (desk) 3160375 4.6 16 / 20 5.9 0.24
PlasticContainer (desk) 1797494 4.8 18 / 22 2.4 0.32
PlasticSpoon (desk) 1115891 4.6 10 / 15 2.6 0.38
TapeDispenser (wood) 2726872 6.4 10 / 10 1.8 0.41
TapeDispenser (desk) 3561017 7.9 17 / 17 10.8 0.36
Wrench (desk) 4862720 15.7 9 / 11 47.8 0.17

Table 1: Statistics: For each rigid-body model, a database of
400,000 rigid-body simulations were used to construct a graph with
the indicated number of contact-event nodes. Multiple input sounds
are used, with the average number of contact events (n). Mo-
tions were successfully estimated for most sounds, with the average
search time (in min) for these successful cases reported (search)
along with the average Score. Harder examples often having many
contacts (such as the dice), longer search times, and a lower score.
“Early exits” terminated searches that achieved Score >0.3.

High-speed video comparisons: For some input contact sounds,
we also recorded high-speed video of the associated contact exper-
iments (AdjustableWrench, CreditCard, Eraser, d6, Lego2x4, and
PaperBall). Although the real and synthesized motions are differ-
ent, these videos clearly demonstrate the level of synchronization
attained. For some examples contact deformations are also visually
apparent, e.g., the CreditCard.

Orientation constraints: Adding constraints to the search is help-
ful, especially for objects that have distinct sounds depending on
the type of contact event. This is easily accomplished in our system
by adding additional edge weights.

We demonstrate this by adding orientation constraints to
the Lego, which has distinct sounds depending on whether
its open side lands face down or not, and the Keyboard,
which we always wanted to land with the keys facing up.
Using the normal vector of a face, n, and
a goal direction, d, we construct an affin-
ity factor based on the angle between the
two directions, fo = e−coθ

2

, where θ =

cos−1
(

n·d
‖n‖‖d‖

)
, and co=140 (which sets

the halfwidth to θ = 0.0698 rad ≈ 4o). For each contact node,
if there is an orientation constraint for that node, we add the cor-
responding factor to the incoming edge weight. We matched all
specified final orientations.

Position constraints and audio-visual capture: Another pos-
sible use case of IFA is approximate video-based motion capture.
We captured several rigid-body motion sequences with a calibrated
overhead camera, and labeled the approximate center of mass of
the object at the start of each contact event, giving a desired posi-
tion (in the plane) bi at each contact event i. For simulated contact
events, let xp denote the position projected onto the plane. Mo-
tions with only one event could just be translated along the plane to
match any position constraint. For longer motions, we align xp1−
with b1, and rotate the motion to align the first edge (xp2− − x

p
1−)

with (b2−b1). For each subsequent edge, we add an affinity factor
based on the position of each contact event, fp = e−cp||x

p
i−−b

p
i ||

2

,
with cp = 7000 (which sets the halfwidth to 1cm). Audiovisual re-
sults are in the accompanying video and Figure 14, and error statis-
tics are in Table 2.

Motion Example max (cm / relative) average (cm / relative) L (cm)
Lego2x4 1 6.0 / .28 3.7 / .18 21.3
Lego2x4 2 7.4 / .18 4.1 / .1 41.1
Lego2x4 3 2.8 / .12 1.9 / .08 24.0
Garlic 1 8.3 / .09 4.4 / .05 96.8
Garlic 2 4.1 / .04 2.4 / .03 96.7
TapeDispenser 1 8.6 / .12 4.5 / .06 71.5
TapeDispenser 2 10 / .15 5.8 / .09 64.8
TapeDispenser 3 7.1 / .18 4.9 / .12 39.6

Table 2: Position Constraint Statistics: For each motion, we re-
port the maximum and average position errors. Errors are given in
cm, as well as units relative to the longest edge L of the motion’s
bounding box.

Figure 14: Audio-visual motion estimation of rigid-body con-
tact: We estimate virtual rigid-body motions with planar object po-
sitions {xpi } (black dots) at contact events that approximate video-
recorded object motions with indicated contact positions {bi} (red
dots).

Music inputs: We also experimented with motion synthesis for
highly nonphysical inputs taken from musical scores. Obtaining

plausible synchronized motions can be challenging for such inputs
due to infeasibility. For example, it is highly unlikely that a falling
object would bounce indefinitely, or tap out a James Brown song.
By relaxing plausibility and energy constraints, we were able to
synchronize to music. We include two whimsical examples: (1) a
6-sided die tapping out the classic knocking rhythm “Shave and a
haircut. Two bits.” (see video); and (2) we individually synthesized
an ensemble of dice that tap to a popular drum track (see Figure 15).
Terminal events were not imposed on any input contact-time signa-
tures. To match longer input sequences, or ones with impossibly
long pauses, we allow energy gains by modifing the energy growth
factor fE to allow a user-specified bounded energy gain.

Figure 15: Funky Dice: Each die taps out drum tracks from
the “Funky Drummer” rhythm; blue dice hit “high hat” sixteenth
notes, and red dice hit snare and bass notes.

Database size dependence: We performed several experiments
to evaluate the effect of the motion database size on the quality of
the synthesized motion. For four of our objects, the CoatHanger,
d6, Eraser, and Lego2x2, we synchronized motions using differ-
ent sized databases. For each database size, we ran the search for
1 hour, then returned the best motion. Results are shown in Fig-
ure 16. The motion quality tends to increase slowly with database
size, although it is not monotonic due to the approximate nature of
the search. Also note that for the d6, the search is unable to find a
solution for the small database sizes.

0 100000 200000 300000 400000

Database Size

0

0.2

0.4

0.6

0.8

1

1.2

S
co

re

Lego2x2
d6
Eraser
CoatHanger

Figure 16: Score vs Database Size: We searched databases of
varying sizes (# simulations) and compared the score (average fac-
tor weight) of the resulting motion (the same sound was used for
all sizes). For each size, we ran the search for 1 hour (without any
early stopping condition). For all four objects, the quality of the
solution generally increases with database size. The d6 fails to find
a solution when using small databases. The CoatHanger, Eraser,
and Lego2x2 found a solution with all the sizes we tested.

7 Conclusion

We have introduced Inverse-Foley Animation, a new technique for
synthesizing rigid-body motions that are synchronized with pre-
recorded sounds, or other temporal input signals. By optimizing

motion for synchronization, we are able to capture the diversity and
richness of real sounds, while avoiding the complexities and limi-
tations of sound synthesis for such sounds. Inverse-Foley Anima-
tion has been successfully used to synthesize synchronized motions
for dozens of objects, and hundreds of contact sound sequences.
Furthermore, such digital techniques, if successful, have the po-
tential to allow sound to be used earlier in the creative animation
pipeline, potentially directing and improving the animated events,
as opposed to having sound added “after the fact” in post produc-
tion, and not achieving complete synchronization. For nonphysical
input sounds, such as musical scores, IFA is a new tool for creative
motion content generation.

Limitations and Future Work: Planning synchronized physics-
based motions is particularly challenging. Perhaps the biggest lim-
itation of our method is that, even for real-world contact sound in-
puts, it is not guaranteed to find a plausible solution. For a small
fraction of the real-world contact-sound inputs, our system was not
able to find a motion with a satifactory Score, which can be due
to several factors: rigid-body dynamics modeling error (differing
geometry, mass properties, friction, or (most commonly) contact
restitution); violation of the rigid-body assumption, e.g., the Cred-
itCard deforms noticeably on contact, can lead to different contact
behavior; under-sampled motion databases can introduce infeasibil-
ity; even for large databases, the graph search method is not guaran-
teed to find solutions due to the incomplete nature of its branch-and-
bound search—an issue for very long contact sequences, such as the
dice (d4, d6, ..., d20). Other limitations arise from the fact that the
input contact-time signature is a gross simplification of temporal
contact dynamics, and hand labeling of contact times solely from
sound can be ambiguous. For some of the sounds, the annotated
contact signature may be sufficiently incorrect, and impossible for
the model to satisfy plausibly, even without rigid-body modeling
limitations. Some contacts may be too quiet to hear, and fast con-
tacts (e.g., when dice are chattering) may be too close to each other
for humans to distinguish. Our system is not highly optimized for
speed, and significant improvements could be made, e.g., to accel-
erate graph-based motion synthesis. Our approach has many mo-
tion design parameters, which we have hand tuned, and although
we use the same parameters for our examples, better results may be
obtained by optimizing them further. Finally, this work investigated
the motion of a single rigid-body on a plane, and it is interesting to
consider the more general problem of how to hallucinate animations
that match sound. Future work should consider non-planar environ-
ments and multiple interacting objects, as well as other motion phe-
nomena, such as characters, non-rigid bodies, and fluids, and other
nonphysical temporal inputs. Finally, physics-based methods that
use both audio and visual inputs streams are needed for tracking
the motion of contacting rigid bodies.

Acknowledgements

We thank the anonymous reviewers for their constructive feedback.
Mitsuba was used for all renderings. We acknowledge funding
and support from the National Science Foundation (HCC-0905506,
DGE-1144153), Intel, the John Simon Guggenheim Memorial
Foundation, and donations from Pixar and Autodesk. This research
was conducted in conjunction with the Intel Science and Technol-
ogy Center–Visual Computing. Any opinions, findings, and con-
clusions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of the Na-
tional Science Foundation or others.

References

ARIKAN, O., AND FORSYTH, D. A. 2002. Interactive motion

generation from examples. ACM Transactions on Graphics 21,
3 (July), 483–490.

BARZEL, R., HUGHES, J. F., AND WOOD, D. N. 1996. Plau-
sible motion simulation for computer graphics animation. In
EGCAS 96: Seventh International Workshop on Computer An-
imation and Simulation, 183–197.

BELTA, C., AND KUMAR, V. 2002. An SVD-based projection
method for interpolation on SE(3). Robotics and Automation,
IEEE Transactions on 18, 3, 334–345.

BENDER, J., ERLEBEN, K., AND TRINKLE, J. 2013. Interac-
tive simulation of rigid body dynamics in computer graphics. In
Computer Graphics Forum, Wiley Online Library.

BHAT, K. S., SEITZ, S. M., POPOVIĆ, J., AND KHOSLA, P. K.
2002. Computing the physical parameters of rigid-body motion
from video. In Computer VisionECCV 2002. Springer, 551–565.

BRUDERLIN, A., AND WILLIAMS, L. 1995. Motion signal pro-
cessing. In Proceedings of SIGGRAPH 95, Computer Graphics
Proceedings, Annual Conference Series, 97–104.

CARDLE, M., BARTHE, L., BROOKS, S., AND ROBINSON, P.
2002. Music-driven motion editing: local motion transforma-
tions guided by music analysis. Proceedings 20th Eurographics
UK Conference, 38–44.

CHADWICK, J. N., AN, S. S., AND JAMES, D. L. 2009. Harmonic
Shells: A Practical Nonlinear Sound Model for Near-Rigid Thin
Shells. ACM Transactions on Graphics 28, 5 (Dec.), 119:1–
119:10.

CHADWICK, J. N., ZHENG, C., AND JAMES, D. L. 2012. Precom-
puted acceleration noise for improved rigid-body sound. ACM
Transactions on Graphics 31, 4 (July), 103:1–103:9.

CHENNEY, S., AND FORSYTH, D. A. 2000. Sampling plausible
solutions to multi-body constraint problems. Proceedings of the
27th annual conference on, 219–228.

CHION, M. 1994. Audio-Vision: Sound on Screen. Columbia
University Press.

COHEN, M. 1992. Interactive spacetime control for animation. In
ACM SIGGRAPH Computer Graphics, ACM, vol. 26, 293–302.

DUFF, D. J., MORWALD, T., STOLKIN, R., AND WYATT, J. 2011.
Physical simulation for monocular 3d model based tracking. In
Robotics and Automation (ICRA), 2011 IEEE International Con-
ference on, IEEE, 5218–5225.

HOFER, M., AND POTTMANN, H. 2004. Energy-minimizing
splines in manifolds. ACM Transactions on Graphics 23, 3
(Aug.), 284–293.

KIM, T.-H., PARK, S. I., AND SHIN, S. Y. 2003. Rhythmic-
motion synthesis based on motion-beat analysis. ACM Transac-
tions on Graphics 22, 3, 392–401.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion
Graphs. ACM Transactions on Graphics 21, 3, 473–482.

KUFFNER, J. 2004. Effective sampling and distance metrics for
3D rigid body path planning. In Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004 IEEE International Conference on,
vol. 4, IEEE, 3993–3998.

LEE, H.-C., AND LEE, I.-K. 2005. Automatic synchronization of
background music and motion in computer animation. Computer
Graphics Forum 24, 3, 353–361.

LEE, J., CHAI, J., REITSMA, P. S. A., HODGINS, J. K., AND
POLLARD, N. S. 2002. Interactive control of avatars animated
with human motion data. ACM Transactions on Graphics 21, 3
(July), 491–500.

O’BRIEN, J. F., COOK, P. R., AND ESSL, G. 2001. Synthe-
sizing sounds from physically based motion. In Proceedings of
ACM SIGGRAPH 2001, Computer Graphics Proceedings, An-
nual Conference Series, 529–536.

O’SULLIVAN, C., DINGLIANA, J., GIANG, T., AND KAISER,
M. K. 2003. Evaluating the visual fidelity of physically based
animations. ACM Transactions on Graphics 22, 3 (July) (July),
527–536.

POPOVIĆ, J., SEITZ, S., ERDMANN, M., POPOVIĆ, Z., AND
WITKIN, A. 2000. Interactive manipulation of rigid body
simulations. In Proceedings of ACM SIGGRAPH 2000, ACM
Press/Addison-Wesley Publishing Co., 209–218.

POPOVIĆ, J., SEITZ, S. M., AND ERDMANN, M. 2003. Motion
sketching for control of rigid-body simulations. ACM Transac-
tions on Graphics 22, 4 (Oct.), 1034–1054.

SHIN, H. J., LEE, J., SHIN, S. Y., AND GLEICHER, M. 2001.
Computer puppetry: An importance-based approach. ACM
Trans. Graph. 20, 2 (Apr.), 67–94.

TAKALA, T., AND HAHN, J. 1992. Sound rendering. In Computer
Graphics (Proceedings of SIGGRAPH 92), 211–220.

TANG, D., NGO, J. T., AND MARKS, J. 1995. N-body spacetime
constraints. The Journal of Visualization and Computer Anima-
tion 6, 3 (July-Sept.), 143–154.

TWIGG, C. D., AND JAMES, D. L. 2007. Many-worlds brows-
ing for control of multibody dynamics. ACM Transactions on
Graphics 26, 3 (July), 14:1–14:8.

TWIGG, C. D., AND JAMES, D. L. 2008. Backward steps in rigid
body simulation. ACM Transactions on Graphics 27, 3 (Aug.),
25:1–25:10.

VAN DEN DOEL, K., KRY, P. G., AND PAI, D. K. 2001. Foleyauto-
matic: Physically-based sound effects for interactive simulation
and animation. In Proceedings of ACM SIGGRAPH 2001, Com-
puter Graphics Proceedings, Annual Conference Series, 537–
544.

WITKIN, A., AND KASS, M. 1988. Spacetime constraints.
In Computer Graphics (Proceedings of ACM SIGGRAPH ’88),
ACM, vol. 22, 159–168.

YILMAZ, A., JAVED, O., AND SHAH, M. 2006. Object tracking:
A survey. ACM Computing Surveys 38, 4, 13.

ZHENG, C., AND JAMES, D. L. 2010. Rigid-Body Fracture Sound
with Precomputed Soundbanks. ACM Transactions on Graphics
29, 4 (July), 69:1–69:13.

