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Figure 1: Fire Sound Synthesis: Our method produces the familiar sound of roaring flames synchronized with an underlying low-frequency
physically based flame simulation. Additional mid- to high-frequency sound content is synthesized using methods based on spectral bandwidth
extension, or sound texture synthesis for user-controlled flame sound styles.

Abstract

We propose a practical method for synthesizing plausible fire
sounds that are synchronized with physically based fire animations.
To enable synthesis of combustion sounds without incurring the
cost of time-stepping fluid simulations at audio rates, we decom-
pose our synthesis procedure into two components. First, a low-
frequency flame sound is synthesized using a physically based com-
bustion sound model driven with data from a visual flame simula-
tion run at a relatively low temporal sampling rate. Second, we pro-
pose two bandwidth extension methods for synthesizing additional
high-frequency flame sound content: (1) spectral bandwidth exten-
sion which synthesizes higher-frequency noise matching combus-
tion sound spectra from theory and experiment; and (2) data-driven
texture synthesis to synthesize high-frequency content based on in-
put flame sound recordings. Various examples and comparisons are
presented demonstrating plausible flame sounds, from small candle
flames to large flame jets.

CR Categories: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Physically based mod-
eling; I.6.8 [Simulation and Modeling]: Types of Simulation—
Animation; H.5.5 [Information Systems]: Information Interfaces
and Presentation—Sound and Music Computing
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1 Introduction

Candle flames, stove top burners and campfires are all familiar
combustion phenomena. Larger flame sources such as flamethrow-
ers, burning wreckage and fire-breathing dragons are familiar fix-
tures in the special effects industry. Due to the unsteady nature
of combustion, these structures all tend to behave as noisy sound
sources. Physically based fire simulators are capable of produc-
ing compelling visual simulations modeling all of these phenom-
ena. Unfortunately, in spite of their ability to produce rich visual
behavior, these solvers produce little information suitable for di-
rect synthesis of flame sounds. Recorded combustion sounds can
provide compelling auditory feedback, but they can require manual
intervention, and can fail to produce realistic synchronized sounds
which match visual flame behavior. While physically based sound
synthesis methods have been developed for vibrating solid bodies
[O’Brien et al. 2001; O’Brien et al. 2002; van den Doel et al. 2001],
fracturing solids [Zheng and James 2010], aerodynamic phenom-
ena [Dobashi et al. 2003; Dobashi et al. 2004] and splashing fluids
[Zheng and James 2009; Moss et al. 2010], none exist for synthe-
sizing the familiar sound of flames.

In this paper, we present a hybrid method for synthesizing plausi-
ble sounds due to combustion phenomena (see Figure 1 for a pre-
view of our results). Rather than building a custom flame solver
specifically for sound synthesis, we instead design a sound model
which can be driven by data from current physically based anima-
tions. Using our sound model, existing simulators can synthesize
synchronized sounds. However only low-frequency sounds, such
as rumbling from very large flames, can be synthesized in practice
for two reasons: (1) time-stepping combustion phenomena at au-
dio rates is impractical due to the high computational costs of 3D
flame simulation; and (2) real combustion noise results from com-
plex thermo-acoustics of chemically reacting flows which are unre-
solved by most flame animations. Sounds recorded in high-speed
video experiments (see §6) reveal detailed temporal behavior at a
variety of time scales which cannot be resolved by flame solvers
run at just graphics rates.

With this in mind, we propose a hybrid technique in which flame



sounds are physically simulated at only a few hundred Hertz, then
additional mid- to high-frequency details are synthesized procedu-
rally using one of two approaches:

1. Spectral bandwidth extension synthesizes high-frequency
power-law noise to extend the frequency response of our oth-
erwise low-frequency sounds. Frequency-domain sound syn-
thesis methods are used to blend synchronized noise, and
thereby produce power-law spectra that matches theoretical
and experimental models of turbulent flames.

2. Sound texture synthesis allows us to synthesize fine-scale
sound structure with more interesting temporal details. A
modified coarse-to-fine texture synthesis method [Wei and
Levoy 2000] is used to coherently synthesize detail on top of
the input low-frequency physics-based sound. By varying the
flame sounds used for input training data, users can control the
style of synthesized sounds, while retaining synchronization
with simulated flames.

Other Related Work: The most closely related graphics work is
the work on aerodynamic sound rendering by Dobashi et al. [2003].
They devise a method for efficiently rendering aerodynamic sounds
due to vortex-based noise [Howe 2003], and effectively apply it to
swinging clubs and sticks, and whistling wind. Their run-time ef-
ficiency is due to the use of precomputed flow noise signals. In a
follow-up work [Dobashi et al. 2004], a method is proposed for gen-
eral aerodynamic flow noise, and several examples are presented
which involve sounds produced by turbulent flames. While these
examples demonstrate the versatility of the aerodynamic sound
model, we point out that the dominant source of combustion sound
is not vortex-based noise [Schwarz and Janicka 2009]. For exam-
ple, results from numerical and laboratory experiments confirm that
another source of sound (namely, direct combustion sound; see §2)
is the primary contributor to combustion noise, and that aerody-
namic noise typically makes a relatively small contribution [Ihme
et al. 2009]. In engineering, numerical methods exist for combus-
tion noise based on resolving the thermo-acoustics of chemically
reacting flows [Schwarz and Janicka 2009], however the simulation
methods (such as large eddy simulation) can be orders of magnitude
more expensive than visual flame simulations, which would greatly
limit the practicality of fire sound synthesis.

Non-physics-based synthesis of flame sounds synchronized with
animation have also been considered, but can lack close synchro-
nization with 3D flame state. Frequency-domain sound synthesis
methods, descendant from spectral modeling synthesis [Serra and
Smith III 1990], have been used to synthesize the noise-like roar,
hiss and crackle of an animated fireplace [Marelli et al. 2010]. Our
noise-based bandwidth extension method uses similar frequency-
domain noise methods to enhance our low-frequency physics-based
sound. It was inspired by (blind) bandwidth extension methods
used in the audio community to add high-frequency detail to de-
graded signals such as digitally encoded audio [Liu et al. 2003;
Larsen and Aarts 2004; Annadana et al. 2007]. McDermott et
al. [2009] synthesized a fire sound clip using spectral noise, and
found that missing temporal structure could be modeled using
higher-order statistics. In contrast, we use a spectral noise model
and obtain temporal structure from a low-frequency physics-based
fire sound.

Sound texture modeling and synthesis provides another way to re-
synthesize fire sounds from recordings (see [Strobl et al. 2006] for
a recent review), and includes audio generalizations of image tex-
ture synthesis [Efros and Leung 1999; Wei and Levoy 2000; Efros
and Freeman 2001]. Granular synthesis [Roads 2004] is a clas-
sic method for re-synthesizing micro-sound details, but it can be
difficult to arrange grains so as to re-synthesize meso-scale tempo-

ral structures. Wavelet tree learning [Dubnov et al. 2002] is able
to re-synthesize stochastic and quasi-periodic textures effectively,
but offers no automatic input control needed for fire sound synthe-
sis. Motion-driven sound synthesis [Cardle et al. 2003] provides
a fully automatic control technique wherein a training motion sig-
nal w/ sound is segmented and used to map sound onto an input
motion signal, e.g., of a 2D car motion. Unfortunately, it does not
generalize to 3D fire motions, and our experience with synthesiz-
ing short segments of audio (using low-frequency sound segments
to index high-frequency content) suffered from obvious granular-
synthesis-like artifacts. In contrast, we use a modified texture syn-
thesis approach wherein low-frequency fire sounds seed a coarse-
to-fine sound texture synthesis similar to [Wei and Levoy 2000].

2 Background

2.1 Physically Based Flame Simulation

Our sound synthesis approach is designed to build upon ex-
isting flame solvers familiar to the computer graphics commu-
nity [Nguyen et al. 2002; Hong et al. 2007; Horvath and Geiger
2009]. In particular, our examples are generated using the Pyro
FX solver and Flame Solver from Side Effects Software’s Houdini
3D animation tools package (http://www.sidefx.com). The flow
of gaseous fuel and products in a 3D domain is modeled using the
Euler equations

0 =
∂u

∂t
+ u · ∇u +

1

ρ
∇p where ∇ · u = φ. (1)

Here φ is an optional divergence source term introduced in the
vicinity of combustion to model the effect of expanding gases
[Feldman et al. 2003]. A density field is used to govern the in-
troduction, advection and diffusion of smoke [Fedkiw et al. 2001].
A temperature field is also modeled to track the introduction of heat
by combustion and to drive forces such as thermal buoyancy [Fos-
ter and Metaxas 1997]. Other effects such as vorticity confinement
and procedural turbulence may be introduced to increase the live-
liness and visual realism in simulated flames [Nguyen et al. 2002;
Horvath and Geiger 2009].

Combustion is modeled in [Nguyen et al. 2002] using a blue core
model. In premixed flames (flames in which reactants are mixed
and will burn immediately upon reaching a certain temperature) the
blue core specifies a flame front interface between unburned fuel,
and hot gaseous products produced by rapid combustion as fuel
crosses the flame front. Separate sets of incompressible flow equa-
tions are used to model the flow of unburned fuel and gaseous prod-
ucts inside and outside of the flame front. The level set method is
used to track a moving implicit surface representing the flame front.
Voxels outside of the flame front store reaction coordinates which
track the time elapsed since the gas stored in each voxel crossed the
front. These quantities are combined with a flame temperature pro-
file function to track the temperature of gaseous products outside of
the front.

In Houdini’s Pyro FX solver, fuel is stored as a volume field along
with temperature, velocity, etc. Fuel has an associated ignition tem-
perature TI and burn rate b. At a given time step, if voxel (i, j, k)
has fuel concentration fijk > 0 and temperature Tijk > TI then
a quantity of fuel ∆fijk = ∆tb is consumed and removed from
voxel (i, j, k). Here ∆t refers to the simulation time step. Tem-
perature Tijk, divergence sourcing φijk and density ρijk are modi-
fied according to how much fuel is consumed. To make the flames
more lively, synthetic turbulence can be injected into the velocity
field [Bridson et al. 2007; Kim et al. 2008].



2.2 Combustion Sound Generation

In general, sounds produced by combustion phenomena can be ex-
pressed as a sum of contributions from multiple sources. A wave
equation for combustion sound can be derived which includes con-
tributions from turbulent vortex-based flow noise and direct com-
bustion noise [Chrighton et al. 1992]. Numerical and experimental
results in [Ihme et al. 2009] suggest that direct combustion noise is
indeed the dominant source of sound from combustion phenomena.
The primary quantity of interest in our work is direct combustion
noise; namely, noise produced by unsteady density fluctuations re-
sulting from combustion heat release. Under this assumption, a lin-
ear wave equation describing combustion sound is given as follows
[Chrighton et al. 1992; Rajaram and Lieuwen 2009]:
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p, c, ρ and γ refer to the unsteady pressure, speed of sound, density
and ratio of specific heats of air, respectively; c0 and ρ0 refer to the
ambient speed of sound and density; γ is assumed to be independent
of temperature, and combustion is assumed to take place at ambient
pressure p0. The heat release rate q is the rate at which heat is
introduced in to the domain by combustion. The free-space Green’s
function can be used to solve (2) for the sound pressure [Chrighton
et al. 1992],
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1
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∫
R3

[q]

‖x− y‖d
3y, (3)

where brackets [·] refer to evaluation at t− ‖x− y‖ /c0.

2.3 Combustion Sound Spectra

Numerous theoretical and experimental investigations into the
acoustic power spectrum emitted by flames have been carried out.
Abugov and Obrezkov [1978] recorded sounds generated by flames
in a propane burner, and observed that in the high frequency region
(beyond a certain peak frequency) the power spectrum of acous-
tic emissions from the flames exhibits a P (f)∝ f−5/2 power law.
Mathematical derivations by Clavin and Siggia [1991] showed that
the f−5/2 power law would result if the flame front were subjected
to fully developed velocity turbulence that obeyed a Kolmogorov
energy spectrum, E(k) ∝ k−5/3 where k is the wave number.
Note that Kolmogorov turbulence models are commonly used in
fluid animation [Kim et al. 2008]. Very recent work performed a
variety of experiments to study the acoustic emissions of turbulent
flames [Rajaram and Lieuwen 2009], and also found that beyond a
certain peak frequency the acoustic power spectrum appears to obey
a power law P (f)∝f−α, but that fitting this model to experimental
data suggested plausible values for α in the range 2.1<α<3.4.

3 Low-Frequency Fire Sound Synthesis

3.1 Fire Sound Model

Under the premixed flame assumption, unburned gas is consumed
and releases heat via combustion very quickly as it crosses the flame
front [Nguyen et al. 2002]. Strahle [1972] argued that only velocity
fluctuations in the vicinity of the flame front are responsible for sig-
nificant sound output. To model low-frequency sound output from
a flame simulation, we make the assumption that the heat release
due to velocity fluctuations in the vicinity of a flame front surface
patch δS about point x is proportional to the velocity flux across
that patch

δq(x) = u(x) · n(x) δS (4)

where n(x) is the normal to the surface patch δS at point x. Us-
ing this, the volumetric heat release integral can be rewritten as an

integral over the front surface S∫
R3

q d3x =

∫
S

u · n dS. (5)

Intuitively, this model suggests that the rate at which heat is re-
leased in to the domain at a point x on the front surface is pro-
portional to the rate at which fuel is carried in to the surface at
that point. Relationships between the volume integral of the heat
release rate and surface velocity flux integrals of this form occur
in the literature [Strahle 1972; Clavin and Siggia 1991; Chrighton
et al. 1992]. We ignore time delays and distance attenuation in (3),
and also omit constants, since they just provide a fixed scaling to the
output sound. Using these simplifications and (5), we can generate
low-frequency flame sounds using

p(t) =
d

dt

∫
S(t)

u(x, t) · n(x, t) dS(x) =
d

dt
I(t) (6)

where the flame front S, its normal n and the velocity field u are
all time-dependent quantities. Figure 2 provides a schematic of the
geometry used in this sound model.

S
n

x

Figure 2: Flame front surface: Sound is computed by evaluating
and differentiating a velocity flux integral I(t) over this dynamic
surface.

3.2 Flame Front Estimation

Since flame solvers model the flow of smoke, gaseous products,
fuel, etc., the velocity field u is readily available at any point in
the domain (see §2.1). In some solvers, a representation of the
flame front may also be available. For example, level set methods
track an implicit surface representing the flame front [Nguyen et al.
2002], from which an iso-surface can be extracted using Marching
Cubes [Lorenson and Cline 1987] or a similar method.

However, as described in §2.1, not all flame solvers use an explicit
representation of the flame front to model combustion. In these
cases, we must estimate a representation of the flame front surface
which is physically plausible and resolves the turbulent dynamics.
Given a fuel-based combustion model, such as the one presented
in §2.1, we can define a field Bijk whose contents specify the cur-
rent rate of fuel consumption in voxel (i, j, k). for example, this
information is stored in the “burn” field in Houdini’s solver. By ex-
tracting a suitable iso-surface, we can estimate a plausible interface
separating unburned fuel and burned combustion products.

Extracting an iso-surface directly from data on a modest-resolution
voxel grid tends to produce jagged surfaces with non-smooth nor-
mal fields. Unfortunately such surfacing artifacts can result in unde-
sirable sound artifacts with our method. To address these problems
we use a higher-order cubic interpolation method to reconstruct S.
Suppose that we wish to build an iso-surface from field B, which is
discretized on a finite difference grid at points Bijk, which corre-
sponds to the value of B at point (xi, yj , zk). In order to recover a
smooth front surface S and normal field n we introduce interpola-
tion functions φijk(x) and define a new field B̃ as follows:

B̃(x) =
∑
i,j,k

φijk(x)Bijk where
∑
i,j,k

φijk(x) = 1. (7)

We define φijk(x) as a product of one-dimensional interpolation
functions φijk(x) = φ(x−xi

h
)φ(

y−yj
h

)φ( z−zk
h

), where h is the



voxel grid size, and φ is a cubic B-spline basis function,

φ(t) =
1

6

 −3τ3 + 3τ2 + 3τ + 1, |t| ≤ 1
(1 + τ)3 , 1 ≤ |t| ≤ 2
0, otherwise,

(8)

where τ ≡ 1−|t|. Extracting S and n from B̃(x) defined in this
manner provides a smoother iso-surface and normal field (see Fig-
ure 3), and greatly reduces sound artifacts.

Figure 3: Flame front surface estimated using the method in §3.2.

3.3 Sound Pressure Evaluation

The simulations with which we are trying to synthesize sound are
generally only run with time-stepping rates of hundreds of steps per
second. To evaluate a pressure signal at audio sampling rates we
interpolate the original simulation-rate signal. The pressure signal
used to generate sound has the form

p(t) =
d

dt

∫
S(t)

u(x, t) · n(x, t) dS(x) =
dI

dt
. (9)

Since I(t) is known only at discrete time steps t0, t1, t2, . . . , tN =
0,∆t, 2∆t, . . . , N∆t, we use interpolation functions ψi(t) to form
its interpolated signal,

Ĩ(t) =

N∑
i=0

ψi(t)I(ti) where
N∑
i=0

ψi(t) = 1. (10)

The sound pressure p(t) can then be evaluated at any point in time,

p(t) =

N∑
i=0

ψ′i(t)I(ti). (11)

We use a Mitchell-Netravali cubic filter [Mitchell and Netravali
1988] for our interpolation function ψi(t).

4 Spectral Bandwidth Extension

In this section, we present a bandwidth extension method for
adding physics-driven power-law noise to enhance low-frequency
fire sounds. Using time-frequency processing we modify our
sounds’ frequency spectrum so that, beyond a certain frequency,
it matches a preferred fire spectra [Zölzer and Amatriain 2002;
Marelli et al. 2010]. Recall from §2.3 that experimental and theoret-
ical results suggest that in the mid- to high-frequency range, flame
sounds exhibit a power-law spectrum f−α, with α∈ [2.2, 3.4].

Background (spectral noise synthesis): Given a power spec-
trum f−α, the corresponding frequency-domain pressure ampli-
tudes are |p̃(f)| = f−α/2. To synthesize time-domain noise, we
first assign uniformly random phases in the range θj = [−π, π]
to each frequency-domain sample j to obtain a frequency-domain
sound pressure, p̃j(f) = f

−α/2
j e−iθj . Next, time-domain noise

with the desired spectrum is recovered by taking the inverse Fourier
transform, N(t) = IFFT (p̃). In practice, to form N(t) we first
apply a high pass filter Fhigh to p̃ to suppress frequencies below a
cutoff fcut. This ensures that the main content of N(t) is indeed
high-frequency noise rather than low-frequency rumbling.

Algorithm 1: Extends a low-frequency sound with power-law noise
input : pressure, wH , α, Gblur
output: pressureExtended

1 begin
2 pressureExtended← 0
3 for i← 0, 1, 2, . . . do

4 wi(n)←
{
wH − |n− iwH | if |n− iwH | ≤ wH

0 otherwise
5 [pW,i, NW,i]← WindowSignal (pressure,wi,α)
6 β ← ChooseBeta (pW,i, NW,i, α, Gblur)
7 p̃W,blend ← Blend (FFT (pW,i), β FFT (NW,i))
8 pW,blend ← IFFT (p̃W,blend)
9 pressureExtended← pressureExtended + pW,blend

10 return pressureExtended

Figure 4: WindowSignal function from Algorithm 1: Given the
input signal p(t), we first construct a windowed version pW (t) by
multiplying with a linear window function w(t). A noise signal
N(t) is generated by the inverse Fourier transform of a power law
spectrum, and scaled by |p(t)w(t)| to produce a windowed noise
signal NW (t).

Spectral noise extension: In order to appropriately synchronize
power-law noise with simulated low frequency content, we choose
a cutoff frequency fcut at which we wish to begin replacing sim-
ulated low-frequency content with synthesized noise. In all of our
examples we use the Nyquist frequency of our simulation’s 360
Hz time-stepping rate: fcut = 180 Hz. Next, we divide our low-
frequency pressure signal into windows of half-width wH , where
wH is an integer number of samples. Algorithm 1 describes a time-
frequency processing method to introduce high-frequency content
into each windowed signal. The windowed input signal pW (t) and
a spectral noise function NW (t) are computed as shown in Figure
4; we scale the noise by the amplitude of the windowed pressure
signal in order to synchronize its temporal structure. We wish to
blend together pW (t) and NW (t) such that we preserve the origi-
nal behavior of the pressure spectrum in the neighborhood of fcut
and also so that the resulting pressure spectrum does not have any
harsh discontinuities. This is done by choosing an appropriate scal-
ing factor β for NW (t). We compute the spectra for each signal,
p̃W (f) = FFT(pW (t)) and ÑW (f) = FFT(NW (t)), and lin-
early blend the two spectra (using high/low pass filters in some
range surrounding fcut),
p̃W,blend(f ;β) = Flow(f) p̃W (f) + β Fhigh(f) ÑW (f), (12)

which can be illustrated as follows:

We estimate β by requiring that the integrated power of the blended
signal p̃W,blend match that of the original input signal p̃W ,∫

|p̃W,blend(f ;β) g(f)|2 df =

∫
|p̃W (f) g(f)|2 df, (13)



where g(f) is a weighting function used to ensure that signal power
is only considered in a blend region near fcut. We illustrate (13) as

We solve (13), a quadratic equation, for β > 0. In our implemen-
tation, g(f) is a Gaussian with mean fcut and standard deviation
σcut. Finally, we use nearly the same parameters for all of our
bandwidth-extension examples (see Table 1).

α fcut σcut wH Blend range
2.5–3.5 180.0 Hz 10 Hz 500 samples (11.34 ms) [165.0Hz, 195.0Hz]

Table 1: Parameters for Spectral Bandwidth Extension: Param-
eters used for all spectral bandwidth extension results. Blend range
refers to the linear-blending range used by Flow(f) and Fhigh(f).

5 Synchronized Sound Texture Synthesis

The bandwidth extension algorithm presented in §4 adds richness to
sounds synthesized with the methods of §3 by adding synchronized
and appropriately scaled noise with a physically plausible power
spectrum. However, recorded sounds and high-speed flame videos
indicate that additional meso-scale temporal structure exists. This
structure could be added by synchronizing detailed recordings of
fire sound with simulated flames, say, by scaling sound volume ac-
cording to flame size. However, this simple approach would lack
appropriate synchronization, e.g., a large, but steady flame makes
very little noise. In this section, we propose a sound texture synthe-
sis algorithm for synthesizing synchronized fire-sound details.

5.1 Synthesizing Fire-Sound Details

We synthesize fire-sound details in a coarse-to-fine manner using
a modified texture synthesis algorithm most similar to [Wei and
Levoy 2000]. Inputs to our algorithm are a fire sound signal pS
synthesized using the methods of §3, and a training audio clip pT ,
e.g., a recording of real flame sounds. Our audio-detail-transfer
method synthesizes a sound clip with the low-frequency temporal
structure of pS , but the fiery details of pT .

Figure 5: Fire sound Gaussian pyramid for a 23ms training
sound pT . All fire-sound details are synthesized in a coarse-to-fine
manner using an L=6 level pyramid as shown here.

Analogous to [Wei and Levoy 2000], we construct 1D Gaussian
pyramids [Burt and Adelson 1983] GT and GS from our training
and low-frequency input data, pT and pS . We refer to GT and
GS as the “training” and “signal” pyramids, respectively (Figure 5
illustrates GT for a short fire sound). Let GT (`) and GS(`) refer
to the samples stored at level ` = 1 . . . L, where L is the coarsest
level. If NT,` (similarly, NS,`) is the number of samples in level
` of the training (signal) pyramid, then we write the sequence of
samples in the training (signal) pyramid as

p0T,`, . . . , p
NT,`−1

T,`

(
p0S,`, . . . , p

NS,`−1

S,`

)
. (14)

A key distinction between our approach and that of Wei and Levoy
[2000] is that we build GS from our input fire-sound signal pS ,
rather than initializing it with random noise. We zero the contents
of levels 1, . . . , L−1, only retaining pS information inGS(L). Re-
taining the low-frequency signal enables us to synthesize synchro-
nized fire-sound details. We synthesize levels of the signal pyramid
from coarse to fine; synthesis starts at level L − 1, since GS(L) is
specified by the input data pS .

5.2 Windowed Hierarchical Synthesis

Similar to Wei and Levoy [2000], we synthesize the next “pixel” by
finding an approximate nearest neighbor in a dictionary of multi-
level neighborhood samples. However, for reasons of temporal co-
herence and efficiency, we choose to synthesize short, overlapping
audio windows instead of individual samples. Consider windows
on some level ` with window centers, ci = ih, i ∈ N; let the win-
dow half-width (in samples) be h ∈ N (we use h= 4) so that win-
dow i has sample indices in the range Ωi ≡

[
ci − h, ci + h

]
. We

synthesize level ` of GS window-by-window in order of increasing
window index, i. Suppose that GS(`)i−1 is a partially synthesized
signal in which windows 0, 1, . . . , i − 1 have been computed. We
form GS(`)i by adding signal pnew to the index range Ωi, scaled
by a linear hat function Wi[n] = h−

∣∣n− ci∣∣.
pnew is chosen from a set of training windows produced from pT .
Each level ` of GT is divided in to windows with index ranges
Ωi. Window i is associated with a feature-value pair

(
f iT,`,p

i
T,`

)
where piT,` is the sub-vector ofGT (`) with sample indices Ωi. f iT,`
is a two-level feature vector built from samples in GT (`) occurring
immediately before window i in the range[

ci` − hhf , ci` − h
]
, (15)

and neighboring samples from GT (`+ 1) in the range
[(i/2)h− hhf , (i/2)h+ hhf ] , (16)

where hf is a window half-width multiplier (we use hf = 3, re-
sulting in features with 46 dimensions). In practice, these samples
do not lie at integral indices, in which case we use linear interpola-
tion to determine their values. See figure 6 for an illustration of the
structure of a feature vector. We build a dictionary D` of feature-
value pairs for each level ` = 1, . . . , L − 1 (level L is omitted
because it is initialized with our low-frequency fire sound). To syn-
thesize window i of level ` we build a feature vector of samples
from GS(`) and GS(`+ 1) indexed by (15) and (16). pnew is cho-
sen by performing a nearest neighbor search in the feature vector
space of D`. Figure 6 illustrates the process of building D` and
synthesizing GS(`) for h = 2, hF = 2 (we use h = 4, hF = 3 in
practice).

To improve efficiency, we search for approximate rather than exact
nearest neighbors. Given a feature f iS,` whose nearest neighbor is
distance dopt away, we find a feature whose distance d from f iS,` is
no more than (1 + ε) dopt. In all examples, we use ε= 1. Larger
values will improve performance at the cost of sound quality. Ap-
proximate nearest neighbor queries are implemented using the ANN
library (http://www.cs.umd.edu/∼mount/ANN).

5.3 Dynamic Range Matching

The input and training signals pS and pT may have vastly different
dynamic ranges. This problem must be addressed for the synthesis
algorithm in §5.2 to produce meaningful output. For instance, if pS
is much louder than pT then there may be little temporal coherence
from window-to-window in the nearest neighbors sampled from the
dictionary D`, resulting in an sound clip with harsh temporal dis-
continuities. While manual normalization of pS and pT can help,



Figure 6: Sound texture synthesis (h = 2, hF = 2): Initialize the synthesis algorithm by building dictionaries D` of feature-window pairs
for levels ` = 1, . . . , L − 1 of the training pyramid. Then, for levels ` = L − 1, . . . , 1 of the signal pyramid; for window i = 0, 1, 2, . . . in
level `; (i) Build the window’s feature vector, (ii) Look up the nearest neighbor in the training dictionary D`, (iii) add the resulting window
(scaled by a linear hat function) to the signal at level ` and proceed to the next window.

an automated solution to this problem is desirable.

We use a histogram-matching procedure similar to the one proposed
in [Heeger and Bergen 1995]. We construct cumulative distribution
functions FS and FT for the amplitudes of the lowest-resolution
signals, GS(L) and GT (L), respectively. When synthesizing win-
dow i from level L − 1 of GS the feature vector f iS,L−1 includes
samples from level L in the range given by (16). We compute the
average magnitude of these samples, pabs,avg , then evaluate

pabs,training = F−1
T (FS (pabs,avg)) . (17)

Finally, when constructing f iS,L−1 we scale all samples from
GS(L) by r = pabs,training/pabs,avg . Intuitively, if exactly 90%
of the signal data has magnitude below pabs,avg then r is chosen so
that 90% of the training data lies below r pabs,avg . Note that this
procedure only takes place when choosing feature vector entries
from level L of the signal pyramid.

6 Results

We now present sound synthesis experiments for a variety of com-
bustion scenarios. Please see the accompanying video for anima-
tion and sound rendering results.

Implementation Details: All flame simulations were performed
using Houdini’s Flame solver (based on the blue core model de-
scribed in 2.1) or Houdini’s Pyro FX solver (based on the alternate
combustion model described in 2.1) and run at a time-stepping rate
of 360Hz. Typical simulation times ranged between 2 and 10 hours
depending on the length and resolution of the animation and the
particular machine used. Iso-surface extraction is carried out us-
ing a custom Houdini surface operator (SOP) implemented using
the Houdini Development Kit (HDK). Surfacing took between 5-
20s per time step on a single core. We exploit sample-level paral-
lelism and evaluate surfaces as a post-process in parallel on a clus-
ter. Velocity flux integrals are computed on triangles of S using
a one-point quadrature rule. All scenes were rendered using Side
Effects Software’s Mantra renderer. Training audio clips were se-
lected from the Ultimate Fire sound library1. For texture sound
synthesis, all training and input signals pT and pS had a 44.1 kHz
sampling rate. Prior to either bandwidth extension or sound texture
synthesis, we pre-process sound outputs from the synthesis method
in §3 using a high-pass filter (with 30Hz cutoff frequency) to sup-
press low-frequency fluctuations which are inaudible but tend to
produce loud, undesirable content when extended via §4 or §5.

1http://www.therecordist.com/soundbox-sfx/soundbox-pro/ultimate-fire

Method Comparison: We provide comparisons between three
sound synthesis approaches:

1. Low-frequency sound synthesis: Sounds produced using
the velocity flux-based sound model presented in §3.

2. Noise-based bandwidth extension: Sounds produced with
the bandwidth extension algorithm from §4. We note that al-
though these sounds have a physically plausible power spec-
trum, they tend to lack interesting temporal behavior beyond
what is predicted by the low-frequency synthesis method.
Moreover, since all sounds are synthesized using the same
noise model, sounds produced using this method tend to be
very uniform across a variety of combustion scenarios.

3. Sound texture synthesis: Sounds generated using the tex-
ture synthesis approach detailed in §5. By varying the choice
of training data used in this process, we find that we can pro-
duce a richer variety of sounds than those produced by pure
noise-based bandwidth extension. Table 2 provides synthesis
timings and statistics.

Example pT length (s) pS length (s) |D1| Synthesis time (s)
BE STS

Dragon 15 9 167694 223 56
Candle 10 6 112070 151 86
Torch 16 5 179808 63 41
Flame Jet 15 10 167694 256 54
Burning Brick 8 5 98310 64 20

Table 2: Synthesis statistics for bandwidth extension (BE) and
sound texture synthesis (STS) examples. |D1| is the number of fea-
tures at the highest resolution level of the training pyramidGT . BE
timings are for an unoptimized Matlab implementation.

EXAMPLE (Dragon): We model a fire-breathing dragon roughly
1.2m in height. Fuel inflow from the dragon’s mouth is varied to
achieve dynamic variation in the sound.

EXAMPLE (Candle): This scene models a small candle-like flame
blown by a turbulent wind force (see Figure 7 (Left)). Spectral
bandwidth extension produces plausible results for this example
due to the lack of complex mid-to-high frequency structure in small
flames such as this.

EXAMPLE (Torch): A burning torch is animated to swing through
the domain (see Figure 7 (Middle)) using Houdini’s flame solver,
which makes use of a blue core model [Nguyen et al. 2002] with
detonation shock dynamics [Hong et al. 2007].

EXAMPLE (Flame Jet): Fuel is injected with high velocity in to
a closed 1.5m wide box (see Figure 7 (Right)). Fuel inflow is an-



Figure 7: Candle, Torch & Flame Jet Examples

imated to turn on and off periodically. As the fuel is shut off, we
hear a “burn-off” effect as the remaining fuel is consumed.

EXAMPLE (Burning Brick): We model a small rectangular emitter
animated to move rapidly through the domain (see Figure 8). As
the source is moved, we hear characteristic ruffling noises.

COMPARISON (Simulated vs. recorded sound): Sounds and
high-speed video (600 FPS) of a small “fire starter” brick were
recorded by the authors. The “Burning Brick” example is mod-
eled to resemble this experiment so that comparisons can be made.
Results are also generated in which the recorded sound itself is used
as training data for the texture synthesis method from §5.

COMPARISON (Varying power-law exponent, α): We provide
a series of results for the “Burning Brick” simulation synthesized
using spectral bandwidth extension with varying power law expo-
nents α. α is treated as a parameter that can be tuned to change the
character of the output sound. α = 3.0 seems to produce reason-
able results, while α = 2.5 and α = 3.5 produce too much high
and low frequency content, respectively.

COMPARISON (Synthesizing sounds with different training
data): We present examples of identical simulation scenarios in
which we synthesize sounds using texture synthesis with different
training audio clips. We see that we can obtain desirable variation
in the sounds produced by changing the training data.

COMPARISON (With and without dynamic range mapping):
We present an example in which texture synthesis has difficulty
producing coherent output when the dynamic re-mapping proce-
dure from §5.3 is omitted.

7 Conclusion

We presented a method for synthesizing plausible sounds synchro-
nized with physically based simulations of fire. Our hybrid ap-
proach produces sounds from simulations time-stepped at low rates,
then introduces high-frequency content as a post-process using ei-
ther spectral bandwidth extension or texture synthesis techniques.

Limitations and Future Work: Our results are somewhat restricted
by the limited fidelity of signals produced by the methods of §3.
They tend to have a somewhat “bursty” character, and lack some
of the mid-frequency “whooshing” behavior present in real flames.
Recovering this behavior may require more sophisticated modeling
of combustion chemistry in the underlying flame solver, which re-
mains an open problem. An efficient computational model of turbu-
lence and its impact on combustion sound is one potential area for
future work. Alternately, it may be possible to produce plausible
flame sounds without resorting to the costly fluid simulations used
in this work. A sound model that is compatible with low-frequency,
low-resolution fluid simulation and can be effectively extended us-
ing texture synthesis is another area of potential future research.

The dynamic range mapping technique presented in §5.3 makes our
texture synthesis more practical, but in some instances the method

still has difficulty producing a suitable, temporally coherent output
sound. This can occur in cases when the low-frequency input has a
very wide dynamic range, while the training data has a small range,
e.g., training samples that consist of steady rumbling sounds.

Physically principled spatialization of sounds generated by our
method requires further investigation. The low-frequency sound
model (§3) describes monopole sound sources distributed on a mov-
ing surface. In principle, this model could be used to produce spa-
tialized multi-channel sound. Spatialization is less clear for sounds
synthesized with bandwidth extension or texture synthesis.
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