
Motion-driven Concatenative Synthesis of Cloth Sounds

Steven S. An Doug L. James
Cornell University

Steve Marschner

Figure 1: Our data-driven approach to synthesizing cloth sounds is able to produce soundtracks for a wide range of common cloth animation
scenarios. In this example, the familiar sounds of a windbreaker are synthesized as the character shadow boxes.

Abstract

We present a practical data-driven method for automatically syn-
thesizing plausible soundtracks for physics-based cloth animations
running at graphics rates. Given a cloth animation, we analyze the
deformations and use motion events to drive crumpling and friction
sound models estimated from cloth measurements. We synthesize
a low-quality sound signal, which is then used as a target signal for
a concatenative sound synthesis (CSS) process. CSS selects a se-
quence of microsound units, very short segments, from a database
of recorded cloth sounds, which best match the synthesized target
sound in a low-dimensional feature-space after applying a hand-
tuned warping function. The selected microsound units are con-
catenated together to produce the final cloth sound with minimal
filtering. Our approach avoids expensive physics-based synthesis
of cloth sound, instead relying on cloth recordings and our motion-
driven CSS approach for realism. We demonstrate its effectiveness
on a variety of cloth animations involving various materials and
character motions, including first-person virtual clothing with bin-
aural sound.
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1 Introduction

From the soft rustling of denim blue jeans or a woven cotton shirt,
to the loud crumpling of a nylon windbreaker or the characteristic
“zip” of corduroy pants, the natural sounds of clothing help bring
virtual characters to life. Advances in computer graphics have en-
abled realistic visual simulation of cloth in computer animation and
interactive virtual environments, but we still do not know how to
automatically synthesize realistic sounds for synchronized accom-
paniment of these inherently silent cloth simulations.

Cloth animations pose unique challenges for digital sound synthe-
sis. Cloth sounds are noisy, yet have a very natural and organic
quality which is distinctively non-digital. People are also very fa-
miliar with clothing sounds, and so they can be quite attuned to
the presence of digital synthesis artifacts. Direct numerical simula-
tion of physics-based acoustic emissions from fabric is also highly
complex, and would lead to expensive simulation times far beyond
traditional cloth simulation. The need to simulate many different
cloth materials, each with distinctive mechanical and sound proper-
ties, also complicates the estimation and tuning of parameters.

In this paper, we propose a two-stage approach for synthesizing
cloth sounds that combines the responsiveness of motion-driven
sound synthesis with the quality of real cloth recordings (see Fig-
ures 1 and 2). First, we devise a parametric cloth sound model
driven by cloth motion that produces an initial target sound that
captures important cues. Second, we use concatenative sound syn-
thesis to piece together microsound units, from a database of pre-
recorded cloth sounds, that best match the target sound.

Our parametric cloth sound model can be driven by input from
graphics-rate cloth animations. The model accounts for two pri-
mary sources of acoustic emissions from cloth: frictional contact
sounds and crumpling sounds. The friction noise and crumpling
sound models are built using data from experiments in which we
record the sound of a specimen of a specific material as it undergoes
specific motions. We then analyze the input cloth animation’s mo-
tions, extracting sliding contact and curvature information, and use
spectral and sample-based synthesis techniques to generate sound
with characteristics matching those observed in the experimental
data. The model produces a synchronized sound that mimics vari-
ations in the true sound, such as synchronized crumpling events,
and friction noise dependence on sliding speed. However, due to
model limitations, its realism is limited beyond specific controlled
animations. Therefore, we only use this model to generate a low-
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Figure 2: Overview: Given a cloth animation, we first use two parametric sound models for friction and crumpling sounds to synthesize
a low-quality “target” signal. We then dice the signal up into short sound “units” and compute per-unit feature vectors. Finally, we warp
the features using a manually tuned warping function (which can be reused) and use a unit selection process to select a nearby high-quality
“source unit” from a database to replace every target unit. The selected units are concatenated to synthesize the final cloth sound.

quality target signal, which in turn drives the second synthesis
process based on concatenative sound synthesis (CSS) [Schwarz
2004]. CSS is used to piece together microsound units from a
database of pre-recorded relevant sounds. We select a sequence
of database units which best matches the sequence of target sound
units. This unit selection process determines the distance between
target and source units by using low-dimensional feature vectors
based on mel-frequency cepstrum coefficients (MFCC). Since our
synthesized target signal can differ significantly from the recorded
database sounds, we warp the target’s feature vector space with a
manually tuned warping function to better match the variations in
the database. The final synthesized cloth sound is then generated
by concatenating the selected sound units together, with minimal
filtering to avoid introducing digital artifacts.

Our data-driven method can produce plausible cloth sounds, and
we can render realistic first-person cloth experiences by using low-
noise binaural microphones for database recording. Our examples
demonstrate its effectiveness with the challenging examples of cor-
duroy pants and nylon windbreakers, as well as non-character ex-
amples such as blankets and sheets (cotton and polyester). The CSS
model is built using a specific material and garment undergoing par-
ticular actor motions along with a calibration dataset of simulated
cloth motions; however, the model can be reused for novel simu-
lated cloth motions at runtime.

Related Work: Cloth simulation is widespread in computer an-
imation, and a variety of cloth models have been proposed and
studied with the aim of visual reproduction of cloth behaviors [Ter-
zopoulos et al. 1987; Courshesnes et al. 1995; Baraff and Witkin
1998; Kaldor et al. 2008]. In addition to the underlying mod-
els, many methods and algorithms for integrating their dynam-
ics also exist with varying trade-offs between efficiency and accu-
racy [Baraff and Witkin 1998; Choi and Ko 2002], and strategies
for resolving collisions and contact [Bridson et al. 2002]. Unfor-
tunately, such visual simulation methods are not inherently well-
suited to resolving the acoustic vibrations of cloth.

Recently there has been increased interest in developing sound
synthesis techniques for computer animations and virtual environ-
ments. Techniques vary in how much they are based on physi-
cal principles as opposed to recorded data. Many early synthe-
sis techniques are based on simplified models of musical instru-
ments, such as guitar strings and vibrating membranes [Karplus
and Strong 1983; Bilbao 2009]. Recently, much work has been
done on synchronizing physically based synthesis techniques with
physically based animations. Rigid bodies are well-approximated
by efficient linear modal synthesis techniques [van den Doel and
Pai 1996; van den Doel et al. 2001; O’Brien et al. 2002; James

et al. 2006; Raghuvanshi and Lin 2006; Zheng and James 2010],
which unfortunately provide poor approximations to cloth sounds.
Some types of clothing, for example plastic windbreakers, are well
modeled as thin shells. Nonlinear thin-shell and plate sounds have
been widely considered (see [Bilbao 2009; Chadwick et al. 2009]),
but such sound models are typically only valid for very small de-
formations and cannot support crumpling. O’Brien et al. [2001]
proposed a method for synthesizing sounds for general FEM-based
simulations, and sheet-like examples were considered. However,
due to high computational costs and difficult parameter tuning, we
seek a method that is more practical and easier to control. It is
also unclear if existing cloth models could model the mechanics of
crumpling and friction between yarns well enough to produce plau-
sible sound vibrations.

On the other end of the spectrum, data-driven methods focus on
using, or reproducing characteristics of, recorded data when the un-
derlying physical systems are either too expensive to simulate or
methods simply cannot produce convincing sound [Cook 2002; Pi-
card et al. 2009; Peltola et al. 2007]. These techniques often utilize
general synthesis algorithms, such as inverse-FFT synthesis [Rodet
et al. 1992; Marelli et al. 2010], and additive and subtractive syn-
thesis [Serra and Smith 1990]. Our technique uses several of these
techniques to synthesize low-quality target sounds based on sliding
noise and crumpling events.

Sound texture modeling and synthesis methods can be used to
resynthesize an audio corpus [Dubnov et al. 2002; Strobl et al.
2006]. Chadwick and James [2011] synthesized fire sounds using
a hybrid sound synthesis approach wherein a low-frequency sound
is first generated from a physics-based simulation, then data-driven
sound texture synthesis is used to add high-frequency details. In
contrast, we use cloth motion to drive a low-quality measurement-
based sound model, then use that to generate a target signal for
use with concatenative sound synthesis. Our method shares some
similarities with the “Sound-by-Numbers” algorithm, [Cardle et al.
2003] which drives sound models using low-dimensional motion
signals, such as the 2D position of a moving object. In contrast, 3D
cloth animations produce high-dimensional motion signals.

Inspired by granular synthesis techniques [Roads 2004], our final
sound is a concatenation of microsound units from cloth sound
recordings. However, the particular selection of units is controlled
by our low-quality synthesis model, and is most closely related to
concatenative sound synthesis (CSS) [Schwarz 2004]. CSS has ori-
gins in speech sound synthesis [Hunt and Black 1996], where sound
quality requirements dictates a data-driven approach. CSS has been
used in computer music applications for musical instrument synthe-
sis and for resynthesis of audio [Schwarz 2004]. In such cases, the



target signal can be symbolically represented, e.g., as a a sequence
of phonemes or musical notes, as well as using target audio, such
as in audio resynthesis.

The particular topic of synthesizing cloth sounds has seen very lit-
tle work. Cho et al. [2001; 2005] performed experimental stud-
ies concerning the characteristics of frictional sounds and how they
affect the perceived qualities of fabrics. Huang et al. [2003] syn-
thesized sounds for a stylus being rubbed over a cloth patch us-
ing a modal model driven by measured roughness profiles. While
appropriate for their particular haptic application, the model is un-
suitable for general cloth animations. Crumpling sounds have re-
ceived attention in the physics community due in large part to the
interesting self-organized critical phenomena exhibited by acous-
tic emissions from crumpling events and their characteristic power-
law statistics [Houle and Sethna 1996]. Such models have in-
spired geometry-independent stochastic sound models of crum-
pling [Fontana and Bresin 2003].

In motion pictures and video games, cloth sounds are often gener-
ated using hand-selected recordings, or “acted out” by foley artists.
Such approaches can produce high-quality results, but are not com-
puter automated, e.g., for interactive virtual environments. When
they are automated, such as when triggered by computer-generated
events [Takala and Hahn 1992], the sounds lack nontrivial depen-
dence on the cloth’s deformation and contact state. In a sense, our
approach automates the foley process by converting digital cloth
motion directly into a plausible sequence of cloth recordings.

2 Friction Sound Model

Sliding friction is an important component of cloth sound and is
common when cloth rubs against itself or other surfaces. In this
section, we describe a frequency-domain noise model that provides
a material-specific approximation of friction sound. A primary be-
havior we wish to capture is how the frictional sound changes with
respect to sliding speed, since this can introduce pitch-like varia-
tions in many materials (see Figure 3). While other factors can be
important, such as geometric shape, contact state, tension, and scat-
tering, it can be difficult to devise practical experiments to model
these variations. As a first approximation to friction-driven sound,
we use experiments to build a colored-noise model with parametric
dependence on sliding speed. The model suffices to synthesize a
semi-plausible noise-like sound for cloth in sliding contact for pur-
poses of generating a target sound.
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Figure 3: Friction sound spectra vs. sliding speed are shown
for several materials using the interpolated spectral sound model.
Strong dependence on sliding speed is evident for some materials.

Motion Analysis: Given the input cloth motion, our friction
sound model is parameterized by sliding contact velocities. Sliding
contact events can be generated by cloth simulators; however, for
generality, and for use with commodity simulators where contact
state is often inaccessible, we choose to estimate sliding contact
events via position-based collision analysis of animation frames.

For simplicity, we only consider point-triangle contacts. To accom-
modate different contact gap tolerances and interpenetrations, we
assume that each point has some finite collision radius r specified
by the user. If there are triangles within distance r of a vertex, we
record a sliding contact with the closest triangle, and estimate rel-
ative contact speed using a forward-difference scheme. To interpo-
late and avoid harsh discontinuities, we fit piecewise cubic Hermite
interpolating splines to the raw sliding velocities. The result of the
analysis is a function sv(t) that returns the speed at which vertex
v was sliding at time t. If it was not in contact with anything, we
set sv(t) = 0 (which will produce no sound). Similarly we filter
out all points which never slide above some given speed threshold
sthresh, setting their speed to zero, which helps eliminate contacts
merely due to proximity in the rest pose. We observe that higher
mesh resolutions tend to produce cleaner sound signals due to im-
proved spatiotemporal sampling of contact events.

Experimental Analysis: To obtain calibrated measurements of
cloth friction sounds versus sliding speed, we constructed a spe-
cialized apparatus for frictional cloth sound measurement (see Fig-
ure 4). We wrap a rectangular piece of cloth around a mechanical
roller, then spin the roller while manually holding another smaller
piece of cloth in contact with it. The roller slows as friction dis-
sipates its momentum, and the resulting sound is recorded until
the roller comes to rest. Because cloth sounds can be very quiet
at low sliding speeds, it is important to minimize the presence of
other sounds when recording an experiment. All our recordings
were done in a sound isolation room (Industrial Acoustics Com-
pany controlled acoustical environment) using equipment with low
levels of self-noise: RODE NT1-A microphones and the TASCAM
DR-680 digital recorder. High-quality bearings help minimize the
additional noise of the device itself. An optical encoder attached to
the roller is used to accurately estimate the rotational speed at any
given time. Since the cloth wrapped around the roller has a seam
which can introduce sound artifacts, we use the encoder informa-
tion to ignore sounds during seam contact. This setup effectively
gives us a mapping from sliding speed to friction sound.

Device Usage
Figure 4: Apparatus for measuring cloth friction sounds used
to build a parametric friction noise model. A sample of cloth is
wrapped around the roller, and another sample is held against it.
The roller is spun and the friction sounds are recorded. An optical
encoder on the roller provides synchronized sliding speed, s(t).

Parametric Noise Model: We begin by extracting a number of
short clips (50 ms in all our examples) from the recorded sound con-
volved with a triangular window and taking the amplitude Fourier
transform of each. We look up the speed in the encoder data at
the center of each clip’s time interval, resulting in a set of (si,Ai)
pairs, where si is the sliding speed and Ai(f) is the amplitude of
the Fourier transform coefficient for frequency bin f . These single-
speed spectra are then interpolated to construct a material-specific
estimate of A(f, s) for continuously varying s (see Figure 3).

Given a sliding speed s, we interpolate the two nearest ampli-
tude spectra, Ai and Aj , with interpolation parameter α(s) =
(s − si)/(sj − si). Direct linear interpolation using A(f, s) =



(1 − α)Ai(f) + αAj(f) produces an unsatisfactory effect of two
different noise sources being blended together, which poorly cap-
tures pitch-changing “zipping” sounds. A better method is to in-
terpret the spectra as probability distribution functions (PDFs), and
linearly interpolate their inverse cumulative distribution functions
(CDFs) instead [Matusik et al. 2005] (see Figure 5). Specifically,
we approximate A(f, s) using

ck(f) =

∫ f

0

Ak(g) dg, (1)

c−1
α = (1− α) c−1

i + α c−1
j , (2)

A(f, s) =
dcα
df

(f). (3)

This method provides a smooth and perceptually pleasing way to
interpolate between two amplitude spectra.

0.75 0.8 0.85 0.9 0.95

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Speed (m/s)

F
re

qu
en

cy
 (

kh
z)

Linear PDF Interpolation

0.75 0.8 0.85 0.9 0.95

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Speed (m/s)

F
re

qu
en

cy
 (

kh
z)

Linear Inverse-CDF Interpolation

Figure 5: Interpolating Noise Spectra: An example to illustrate
the difference between interpolating the spectra as PDFs (Left) and
interpolating the inverse CDF (Right). Interpolating PDFs cor-
responds to cross-fading two noise sources, whereas interpolating
inverse CDFs yields a noise that shifts in pitch.

Sound Synthesis: Using our parametric noise model, we can
synthesize a soundtrack for each vertex v sliding with speed sv(t) at
time t. We use the Inverse Fourier Transform (IFT) noise-synthesis
method [Serra and Smith 1990; Rodet et al. 1992; Marelli et al.
2010] where the output signal is synthesized as a sequence of 50ms
clips that overlap by 25ms. For a given clip centered at time t, we
assume a constant amplitude spectrum A(f, sv(t)). We synthesize
noise using this spectrum by using random phases to yield com-
plex frequency-domain coefficients, then perform the IFT. We also
use the vertex’s position at time t to perform any position-based
auralization; in our examples, we apply an HRTF model [Brown
and Duda 1998]. Lastly, we overlap and add the clips. The final
friction sound is the sum of all per-vertex friction sounds. While
this method ignores many other factors that add variation to fric-
tional sound, such as transfer effects and variations due to tension
and contact forces, it suffices to produce an initial low-quality target
sound.

3 Crumpling Sound Model

As well as making frictional sounds, cloth can also buckle and pro-
duce crumpling sounds, which can sound like small “pops.” Woven
garments, such as dress shirts and denim jeans, produce audible
crumpling sounds, and stiff synthetics, such as nylon windbreakers,
exhibit characteristically loud crumpling sounds. By analyzing cur-
vature changes in the input cloth animation, we estimate buckling
events and an energy-like measure, and use this information to drive
a data-driven crumpling sound model for target sound synthesis.

Motion Analysis: Given an input cloth animation, which simu-
lates crumpling phenomena to varying degrees of accuracy, we an-
alyze it to estimate the time, location and size of crumpling events.

We resort to a simple heuristic based on mean curvature to decide
when a crumpling event has occurred and how much energy was
involved in it. We consider a vertex v to be “buckling” at frame
time t if its mean curvature Ht

v changed sign from frame t − 1 to
t. If it changes from negative to non-negative, call it a “positive
buckle,” and the opposite direction is a “negative buckle” (see Fig-
ure 6). Once every positive (negative) buckling vertex of frame t is
identified, we take the graph consisting only of positive (negative)
buckling vertices and edges incident to them. We find all connected
components of such graphs and consider each component C to be
a single event. Effectively, if a whole region of the cloth surface
is buckling, this treats it as one large event rather than many small
events. This produces a list of pop events (t,p, E), where p is the
centroid of C and E is an energy-like measure of curvature changes

E =

(∑
v∈C

(Ht
v −Ht−1

v )

)2

= ‖Ht
C −Ht−1

C ‖21. (4)

Figure 6: Crumpling Motion Analysis: (Top) Three consecutive
frames of a cloth simulation. (Bottom) Visualization of “buckling”
vertices where black indicates no buckling, red a “negative buckle,”
and green a “positive buckle.” Each contiguous region of red or
green is treated as a single crumpling event.

Experimental Analysis: We recorded crumpling sound events
for use in data-driven sound synthesis. To isolate crumpling sounds,
one must take care to minimize sliding contact sounds. We mount
a 30cm square of the cloth on two metal handles (using magnets to
hold it in place), then manually deform the cloth using an up-and-
down shearing motion (see Figure 7). This setup consistently pro-
duced many crumpling sounds without friction sounds. It also pro-
vides a direct path to the microphone, unlike the cylindrical method
of [Houle and Sethna 1996]. We typically record about 10-20 sec-
onds of crumpling.

Figure 7: Crumpling Experiment: To record isolated crumpling
sounds of a given material, we affix a square swatch to metal han-
dles using strong magnets, then manually shear the sample.

During post-processing we extract recorded samples of individual
crumpling events using the same method as [Houle and Sethna
1996]: we convolve the energy (the sum of squared pressure val-
ues) with a 20ms rectangular window and look for consecutive runs
with response greater than a threshold Ethresh. We then extend
each sample’s extents to zero-crossings of the signal. See Figure 8
for an example of extracted samples. The Ethresh values used for



polyester, cotton, and the windbreaker were 0.25, 0.50, and 0.025,
respectively. Buckling in corduroy was too quiet to merit modeling.
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Figure 8: Crumpling sound events extracted from a crumpling
experiment recording (cotton) by an energy thresholding method.

Data-driven Sound Synthesis: Given a crumpling event ex-
tracted from motion analysis, we assign a recorded crumpling
sound with a similar “energy.” We then simply play the sam-
ple when the event occurs to produce the output signal, with
any subsequent auralization for stereo effects (we use an HRTF
model [Brown and Duda 1998]). To avoid frame-rate-dependent
artifacts, we also randomly jitter the playback time by 1/30 sec-
ond. Since the “energy” values from motion events and sound
samples are very different quantities, we use histogram match-
ing [Heeger and Bergen 1995] to map an event energy Ee into a
sample energy Es, then use the sample with the nearest energy.
Histogram matching essentially transforms the event distribution
function pe(Ee) into the sample distribution ps(Es) by evaluating
Es = c−1

s (ce(Ee)) where c∗ is the cumulative distribution func-
tion (CDF) of p∗. We typically use 20 bins to compute the PDF,
and approximate the CDF as a piecewise linear function. To re-
duce numerical noise artifacts and control the number of crumpling
events, we reject all Ee events below a threshold Emin. Histogram
matching can be done for each animation individually, but for on-
line applications (where pe is unknown a priori) we use pe and
Emin from a pre-existing “calibration animation” which contains
representative crumpling motions.

4 Concatenative Synthesis of Cloth Sound

Given a cloth animation and the aforementioned friction and crum-
pling sound models, we can now synthesize a target sound,

X(t) = Xfriction(t) +Xcrumpling(t). (5)

Unfortunately, while the target signal captures certain cloth char-
acteristics and synchronized variations, it lacks the realism of
real cloth recordings. Inspired by Concatenative Sound Synthe-
sis (CSS) [Hunt and Black 1996; Schwarz 2004], we construct an
improved result by concatenating samples from a source database
of relevant cloth recordings so that they best match the target
sound. We dice both the target signal X and the source signal
U into short sound units, (xi), i = 1 . . . n and (uj), respectively,
using short non-overlapping windows (referred to as an arbitrary
grain segmentation). For all materials except corduroy, we found
4.2ms units to be long enough to maintain the characteristics of
the recorded sounds. For corduroy, we used 16.7ms units to ac-
commodate its larger-scale temporal structure. We hypothesize that
there exists a target-to-source unit mapping j = J(i), found us-
ing unit selection, such that the signal of concatenated source units,
S = (uJ(1) uJ(2) · · · uJ(n)), is a plausible soundtrack for the
cloth animation. To facilitate comparison of target and source units
for unit selection, we compute descriptive feature vectors f(x) for
each sound unit x (or u). Since the target and source signals can
be quite different, we nonlinearly warp the target feature vectors,
W(f(x)), so that they better match the source database’s feature
vectors f(u) (§4.3). Finally, we perform unit selection to deter-

mine J(i), essentially by minimizing the distance from W(f(xi))
to f(uJ(i)) (§4.4).

4.1 Database Acquisition

We construct databases using source recordings for specific mate-
rials, and particular cloth-character motion scenarios. For a richer
database, we recorded each session using three microphones placed
about a meter apart, and concatenated the signals into a single
source signal. Images of the acquisition process are shown in Fig-
ure 9. Binaural recordings, which are ideal for self-sound listening
experiences, were made using ultra-low-noise in-ear binaural mi-
crophones (Sound Professionals, MS-TFB-2). The exact motions
recorded were chosen to cover calibration animations. For example,
when recording the windbreaker, the subject wore a windbreaker
and performed many jogging, flexing, punching, and waist-twisting
motions. While a very large database can in principle improve the
quality and range of the synthesized sound and avoid repetition, the
target synthesis model is itself of limited fidelity so there are di-
minishing returns. In our examples, we typically recorded subject
motions for about 1 minute.

Figure 9: Database acquisition: (Left) Various natural motions
and garments were recorded in a sound isolation room. (Middle)
A cotton sheet is lightly waved back and forth. (Right) Punching
motions while wearing a windbreaker.

4.2 Feature Vectors

Low-dimensional feature vectors are used to summarize target and
source sound units and facilitate easy comparisons between other-
wise high-dimensional sound units. We found that mel-frequency
cepstrum coefficients (MFCC) (see [Rabiner and Juang 1993]) pro-
vide effective descriptors for cloth sound units. The mel-frequency
cepstrum is a popular compressed signal representation in speech
applications. It works by taking the short-time Fourier transform,
aggregating the spectral energy into uniform bins on the mel-
frequency scale (an empirically derived scale meant to better match
how humans distinguish pitch), and then taking a discrete cosine
transform (DCT) of the logarithm of the bin energies:

f(x) = DCT(log(melN (x))), (6)
where “mel” returns a spectral energy histogram with N bins
spaced uniformly according to the mel scale.

This feature characterizes a unit’s spectral shape and magnitude,
and we find that N = 3 coefficients suffice to distinguish relevant
characteristics of our sounds. Roughly speaking, the first coeffi-
cient correlates with loudness, and the other two coefficients corre-
late with how “crumply” a sound is (see Figure 10). It is unclear
whether more coefficients would be helpful, and this is a topic of
potential future work. For binaural recordings we concatenated the
N -vector features of left and right channels to obtain a 2N -vector
feature.

4.3 Feature Warping

To facilitate unit selection, the feature-space distribution of target
units must be warped to overlap well with that of the source units



Figure 10: MFCC features vs. time: Two plots illustrate how the
3 MFCC coefficients correlate with various motions. (Left) Un-
like MFCC1, MFCC2 is unaffected by the variation in frictional
sound for the first 2 seconds, but it fires when the shaking begins
and crumpling sounds occur. (Right) We observe distinct peaks
corresponding to punches and arm motion. Both MFCC1 and
MFCC2 exhibit peaks for motions that are loud and crumply.

in the database. Given that these distributions can differ wildly de-
pending on the target and recorded sounds, and that the “correct”
target-to-database mapping is subjective and an opportunity to in-
troduce stylization, we propose a user-guided approach. We synthe-
size a target signal for a set of training animations, then a sound de-
signer provides a number of manual correspondences between parts
of the target signal and the source/database signal. Given these cor-
respondences, we fit a feature-warping function W(f(xi)) based on
thin-plate splines (see Figure 11) which can be reused for novel tar-
get signals. Filtering is used to make the process robust to noise
and outliers. We now describe the process in detail.

Temporal Filtering: We temporally filter target and source fea-
tures, since they can be noisy, e.g., due to crumpling events, and
noisy features can lead to overfitting and bad feature matching for
crumpling. We filter the features in time using a Gaussian filter;
filter widths for each dimension are listed in Table 3.

Specifying Correspondences: Each correspondence is user-
specified as time intervals (tk, dk,∆k), where for the k-th corre-
spondence, tk is the start of the interval in the target signal, dk is
the start in the database signal, and ∆k is the length. For exam-
ple, the most trivial correspondence is between intervals of silence
in the target and database signals. Others might be between rapid
sliding events and various degrees of desired crumpling. The inter-
vals used in our examples are typically ∆ = 100 ms to ∆ = 200
ms long, and each fitting uses 5 to 15 correspondences. Figure 11
shows the interface we use for correspondence specification. Typ-
ically, it takes around 5 to 15 minutes of manual work to specify
such correspondences, although it can take 2-5 iterations to achieve
desirable results. See Section 6 for further discussion on this pro-
cess. Given these correspondences (tk, dk,∆k), we find all units in
these intervals and assume they correspond to each other in order.
If {xi1 . . . xin} is the set of target units which lie within the time
interval [tk, tk + ∆k] and {uj1 . . . ujn} is the set of database units
in [dk, dk + ∆k], then we assume the unit correspondences to be
Ck ={(i1, j1) . . . (in, jn)}. We collect these lists of unit-pairs Ck
for all given correspondences and concatenate them into C.

Warp Function Fitting: Given the n correspondences C =
{(i1, j1) . . . (in, jn)} between target and source units, we seek a
smooth feature-warping function W that minimizes the error:

n∑
k=1

‖W(f(xik ))− f(ujk )‖2. (7)
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Figure 11: Manual selection of sound correspondences is done
using a simple interface (Top) with the target signal on top and the
database source on the bottom. A sound designer selects target
clips during perceptually important events, then selects database
clips they would prefer to hear during such events. (Bottom) Plots
of source and target units in feature-space (left/right showing be-
fore/after warping), along with larger markers at centroids of the
selected clips. Target clips are magenta and source clips are green.
Note that the correspondences are not exactly fit by the warping due
to regularization.

To warp the target unit features so that correspondences are re-
spected, while also ensuring a smooth warp that avoids overfitting,
we use a regularized thin-plate spline [Wahba 1990] similar to the
approach taken by Belongie et al. [2002]. For a d-dimensional fea-
ture f = [f1 . . . fd]

T , the displacement function for dimension l is

∆fl(f) = A0,l +

d∑
k=1

Ak,l fk +

n∑
k=1

Wk,l U(‖f − f(xik )‖2) (8)

where U(r)=r2 log(r2). The complete warping function is then
W(f) = f + ∆f(f). (9)

The affine coefficients Ak,l, k = 0 . . . d, and nodal weights Wk,l,
k = 1 . . . n, are obtained by solving a regularized linear sys-
tem [Belongie et al. 2002; Wahba 1990]. We heavily regularize
the system to avoid over-fitting and introducing unintended distor-
tion; values for our regularization parameter λ (from equation 10
of [Belongie et al. 2002]) are given in Table 3.

Warp Reuse: In practice, we fit the feature warp once for a par-
ticular source database and calibration animation, then reuse it for
novel target signals. This reuse reduces the need for manual inter-
vention, and avoids example-specific tuning. Assuming the novel
animations do not deviate too drastically from the feature-space
covered by the calibration animation, the same warp will still pro-
duce plausible sounds. Thus artist intervention can be done just
once per database–simulation pair to train the unit matching model,
but an artist can still adjust warping to stylize the sound model.

4.4 Unit Selection & Synthesis

Next we select a database unit uj for each target unit xi by de-
termining a selection function j = J(i). Our final algorithm for
unit selection is given below in Algorithm 1, which we now ex-
plain. Let the feature vector for the database unit uj be fj = f(uj),
and let the warped and filtered target feature vector for unit xi be
f̃i = W(f(xi)). The simplest unit selection method is to use the
nearest neighbor given some distance metric:

J(i) = argmin
j

D1(i, j) = argmin
j

‖f̃i − fj‖2. (10)

However, we find that it is often beneficial to use a contiguous se-
quence of units, {uj , uj+1, . . . , uj+L} from the database to pre-
serve important temporal structure of the original recording. For



example, with corduroy pants, the zipping sound exhibits tempo-
ral structure larger than the unit size, but using larger units would
restrict CSS flexibility. We use a simple greedy approach to encour-
age the selection of long sequences of units by using the following
distance metric:

D2(i, j) =

L∑
k=0

D1(i+ k, j + k). (11)

One can think of this as choosing a segment of the database unit
curve, as traced out by the feature-space points {fj , fj+1, ..., fj+L},
that is closest to the warped target curve {f̃i, f̃i+1, ..., f̃i+L}). This
tends to select more consecutive sequences of database units, and
thus the resulting synthesized signal exhibits more of the original
recording’s temporal structure. In our examples, we use L values
from 5 to 10 depending on material.

Avoiding large jumps: One issue that arises is that sometimes
a database unit may be very far away in the D1 metric, but close
in the D2 metric, resulting in undesirable “jump” artifacts which
are difficult to blend. To avoid these cases, we limit our search to
units uj that are within a distance dmax of the warped target unit
by using the modified distance function,

D3(i, j) =

{
D2(i, j) if D1(i, j) ≤ dmax
∞ otherwise

(12)

In all our examples, dmax = 2.0, except for the corduroy model
where dmax=3.0. UsingD3 ensures that the unit uj chosen by the
distanceD2(i, j) will not be too far in terms ofD1(i, j), and it also
serves as an optimization, since we do not have to computeD2(i, j)
for every database unit; a similar approach is taken by Pullen and
Bregler [2002]. On the off chance that no database units are within
range, we fall back to the simple D1 distance.

Avoiding repetition: Rapid repetition of selected units should be
discouraged, since even repeating a unit once can produce a notice-
able buzzing artifact. We explicitly avoid this by giving every unit a
“cool-off period” Lc: if a unit uj is selected, it is not allowed to be
selected for the next Lc target units. In all our examples, Lc = 20.

Algorithm 1: Match database units j=J(i) to target units i

1 begin
// Compute distance table T

2 for all pairs (i, j) do
3 T (i, j)← D3(i, j)

// Fix up target units far from DB
4 Far ← {i | T (i, j)=∞ ∀j}
5 for all pairs (i, j), i∈Far do
6 T (i, j) = D1(i, j)

// Compute matching J
7 for each target unit i do
8 J(i) = argminj T (i, j)

// Enforce cool-off
9 for k ← 1 to Lc do

10 T (i+ k, J(i)) =∞

11 return J

Concatenating units: Simply concatenating selected source
units can produce many inter-unit discontinuities. Large C0 dis-
continuities in an audio signal are heard as undesirable “crackles.”
To ensure that each unit starts and ends at a zero crossing, we can
extend each unit boundary to an adjacent zero-crossing, and blend
the extra samples using an overlap-add to avoid making the signal
longer than the original target signal. Zero-crossings can be sparse

for signals with strong low-frequency content, so we apply a 5th-
order Butterworth high-pass filter with a 100 Hz cutoff frequency.
This filter does not noticeably affect the synthesis quality, and it
makes for a simple solution to large C0 discontinuities.

5 Results

We now describe our results, but please watch and listen to the ac-
companying video with stereo headphones to hear the sonified an-
imations. Figure 12 shows rendered stills from all our example
animations. Parameters related to specific animations and materials
are given in Table 1, and timings in Table 2. Parameters and timings
specific to CSS warps and unit selection are given in Table 3.

Implementation Details: The commercially available cloth simu-
lator SyFlex was used along with Maya 2009 for all our examples.
They were simulated and rendered at 60 FPS, and the simulation
times ranged from half an hour up to 4 hours for our longest and
most challenging examples. Simulations were done with two Intel
Xeon X5570 processors (2.9 GHz, 8 cores total) using 16 threads.
Specific timings for other parts of the pipeline are given in Table 2,
but the cloth simulation was typically the dominant job. Motion-
capture data for character animations are from the CMU Motion
Capture Database. Geometry for the windbreaker jacket and pants
are from Poser 6.

We record and synthesize all audio signals at 96 kHz. For all our
examples except the binaural one, we essentially treat each stereo
channel separately all the way through the pipeline. The results are
different due to the use of a head-related transfer function, and they
are combined in stereo in the video. The warps for the cotton and
polyester sheets were trained using manual correspondences that
covered both channels, as they were sufficiently different, but it
sufficed to train only on the left channel for the character examples
as the calibration animation is similar for both channels.

Lastly, our simulated examples often had contact speeds much
higher than what we could measure in the friction sound experi-
ment. In order to fully and evenly demonstrate the full range of
friction sounds, we scaled down the speeds to keep them in range.
For the character examples, due to the difficulty of simulating the
stiff and light windbreaker material, we further applied a non-linear
function to the sliding speeds in order to subdue lower–speed con-
tacts that were causing excessive noise: s̄v(t) = (sv(t)/4)1.5.
For speeds that were below our measured models, we quadrat-
ically scale down the lowest-speed spectrum A0 towards zero:
A(f, s)=(s/s0)2A0(f) for s<s0.

EXAMPLE (Cotton Sheet): This calibration animation exercises
a cotton sheet by dragging it on the floor, picking it up, dropping
it, and dragging it over a cylinder. Manual correspondences were
specified at various points of crumpling and sliding, and particu-
lar care was taken to make sure the sliding motions produced no
crumpling. The floor and cylinder were treated as being covered in
cotton as well, as we do not handle friction sounds between multi-
ple material types.

EXAMPLE (Cotton Couch): A sheet is draped over a cotton-lined
couch, peeled off, and then dragged over again rapidly. It uses the
warping from the Cotton Sheet example, so no manual intervention
was required for CSS. Notice the characteristic crumpling at the end
when the sheet quickly slips off the couch.

EXAMPLE (Polyester Sheet & Couch): We used the same anima-
tions as the previous two examples, except we synthesize them as
polyester. The resulting sound is noticeably different, with higher
pitched narrow-band content, as is characteristic of light polyester.
When the sheet quickly slips off the couch at the end of the couch
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Figure 12: Result Animations: Please view the accompanying video with stereo headphones to hear the sonified animations.

example, the sliding noise quickly shifts up in pitch, giving a dis-
tinct “zip” effect.

EXAMPLE (Exercising): A motion-captured character goes
through a variety of exercises and stretches while wearing a ny-
lon windbreaker and corduroy pants. This serves as the calibration
animation for these materials, so we manually tuned a warping and
reused it for the next two examples (Jogging and Boxing). Some
of the motion was edited in order to cover enough of the feature-
space, such as the second half of the in-place jogging being sped
up, so some parts may look artificial. It should be noted that we do
not use the crumpling histogram match from this for the next two
examples, as the crumpling energy distributions were too different.

EXAMPLE (Jogging): A character jogs back and forth a few
times to demonstrate spatialization effects (HRTF [Brown and
Duda 1998] and distance falloff). CSS automatically selects qui-
eter source units for quieter target units, so the spatialization is pre-
served. Some jog cycles do not produce the expected “zip” of the
corduroy pants due to the fact that the legs are often separated in
the motion capture data.

EXAMPLE (Boxing): A character “shadow boxes,” throwing a va-
riety of punches. This demonstrates the strong synchronization be-
tween the synthesized sound and the animation. The corduroy pants
are relatively quiet due to the boxer’s wide stance.

EXAMPLE (First-person Boxing): The same boxing animation as
in the previous example, but we position the camera and the lis-
tening position on the head of the character. In order to capture
the sound of actually wearing a windbreaker—which is very dif-
ferent from hearing a windbreaker from a distance—we recorded
a different database using the binaural microphones. Notice subtle
spatialization effects in the final CSS result. The corduroy pants are
not included in this sound.

6 Conclusion

We have presented a data-driven method for automatic concatena-
tive synthesis of sounds for 3D cloth animations. We focus on two
specific sound-producing phenomena, friction and crumpling, and
we have demonstrated that these are sufficient for a variety of ani-
mated cloth scenarios. Our data-driven method is computationally

Table 1: Example Parameters: The parameters used for the wind-
breaker in “boxing” were also used for “first-person boxing.”

Cloth Type Animation Collision radius r sthresh Emin
Cotton Sheet 0.05 0.02 4878
Cotton Couch 0.2 0.02 4878
Polyester Sheet 0.05 0.02 528
Polyester Couch 0.2 0.02 528
Windbreaker Exercises 0.05 0.0 98902
Windbreaker Boxing 0.05 1.0 172875
Windbreaker Jogging 0.05 0.0 906402
Corduroy Exercises 0.05 2.0 -
Corduroy Boxing 0.05 1.0 -
Corduroy Jogging 0.05 2.0 -

efficient and requires a reasonable amount of recorded data and hu-
man intervention. This makes it practical for pre-rendered movies,
and it has potential to be fast enough for interactive virtual environ-
ments in the future. Although it is difficult to make precise, objec-
tive measurements of accuracy, our results do compare favorably to
actual recordings.

Limitations & Future Work: Our focus on friction and crumpling
sounds is motivated by the observation that these two sound sources
dominate acoustic emissions arising from character clothing mo-
tions, but for high speed cloth animations, such as a flag waving
in the wind or the whipping of bed sheet, other emissions due to
increased tension and impacts become important. One potential ap-
proach is to do low-resolution simulations of such motions to get
these tension-based sounds, where the cloth momentarily acts like
a vibrating membrane, and add this to the target signal.

Our current pipeline does not allow for interactions between multi-
ple types of cloth. Our features are not adequate for distinguishing
between, for example, cotton contacting cotton versus cotton con-
tacting polyester. More sophisticated features may be able to distin-
guish the two, allowing the target signal to contain a mix of various
cloth types.

The interface for manual feature correspondences could be im-
proved to be more intuitive. Currently, depending on the variety of
sounds involved in a given example, finding a good set of manual
correspondences can take many iterations of trial and error, some-



Table 2: Example Timings: All timings were done on an 8 core 2.93GHz Intel Xeon processor.

Cloth Type Animation Friction Motion Friction Crumpling Motion Crumpling Target Unit Unit
Analysis (s) Synthesis (s) Analysis (s) Synthesis (s) Feature Comp. (s) Selection (s)

Cotton Sheet 37 135 12 21 73 25
Cotton Couch 104 310 16 13 132 48
Polyester Sheet 37 295 12 66 74 33
Polyester Couch 104 455 16 16 132 62
Windbreaker Exercises 315 94 62 35 152 41
Windbreaker Boxing 766 255 120 101 472 197
Windbreaker Jogging 373 86 60 52 199 55
Corduroy Exercises 55 90 - - 45 5
Corduroy Boxing 124 75 - - 79 24
Corduroy Jogging 58 80 - - 37 6
Windbreaker FP Boxing 766 274 120 94 446 65

Table 3: CSS Model Parameters and Timings: Each calibrated CSS model consists of a TPS warp fit to manual correspondences along
with unit selection parameters. The animation listed is the calibration animation, and the same parameters were used for other animations
that reuse the CSS model. The number of correspondence units is effectively the number of TPS nodes used for warping, and time to perform
TPS fitting was negligible. All manual correspondences were clips of length 0.1 or 0.2 seconds long. Gaussian filter widths are given in
number of sound units, and the standard deviation was a quarter of the width.

Cloth Type Animation # Manual corr. # Corr. units TPS λ L Gaussian widths DB Length (m:ss) DB Feature Comp. (s)
Cotton Sheet 14 419 1.0e2 5 20, 50, 10 3:45 1317
Polyester Sheet 9 280 1.0e5 10 10, 50, 20 4:05 1392
Windbreaker Exercises 5 187 1.0e5 5 20, 30, 10 3:13 1101
Corduroy Exercises 3 15 0.0 10 20, 30, 10 2:41 235
Windbreaker FP Boxing 8 208 1.0e5 5 20, 30, 10 1:32 1051

times up to 5. We conservatively estimate that each warping func-
tion in our examples took about 1-3 hours to tune, including man-
ual correspondences and synthesis of the calibration animation to
assess the warping with various TPS λ values. Specifying the cor-
respondences only takes about 5 to 15 minutes per iteration (please
see the supplemental video for a typical session), and the rest of the
time is for the CSS pipeline. The time to specify correspondences
and total number of iterations may vary depending on the experi-
ence level of the user. Future work will focus on providing the user
with rapid and intuitive feedback as to which correspondences are
causing undesirable synthesis results, and the system should also
suggest correspondences based on analysis of the feature distribu-
tions.

Other potential areas for future research include acoustic transfer,
such as occlusion of sound emissions by large bodies. It is unclear
how to approach the problem of acoustic transfer around highly de-
formable cloth, and it is also unclear how much it matters. Also, we
fully simulate clothing in our character examples, but it may be de-
sirable to produce sound for skinned cloth models that lack proper
sliding and crumpling events. Lastly, we use a local greedy unit se-
lection algorithm for its potential to be used in online applications,
but it is likely that global optimization techniques would provide
higher quality results for prerendered movies.
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