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Abstract

Fluid sounds, such as splashing and pouring, are ubiquitous and fa-
miliar but we lack physically based algorithms to synthesize them
in computer animation or interactive virtual environments. We
propose a practical method for automatic procedural synthesis of
synchronized harmonic bubble-based sounds from 3D fluid ani-
mations. To avoid audio-rate time-stepping of compressible flu-
ids, we acoustically augment existing incompressible fluid solvers
with particle-based models for bubble creation, vibration, advec-
tion, and radiation. Sound radiation from harmonic fluid vibrations
is modeled using a time-varying linear superposition of bubble os-
cillators. We weight each oscillator by its bubble-to-ear acoustic
transfer function, which is modeled as a discrete Green’s func-
tion of the Helmholtz equation. To solve potentially millions of
3D Helmholtz problems, we propose a fast dual-domain multipole
boundary-integral solver, with cost linear in the complexity of the
fluid domain’s boundary. Enhancements are proposed for robust
evaluation, noise elimination, acceleration, and parallelization. Ex-
amples are provided for water drops, pouring, babbling, and splash-
ing phenomena, often with thousands of acoustic bubbles, and hun-
dreds of thousands of transfer function solves.
CR Categories: I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling; H.5.5 [Information Sys-
tems]: Info. Interfaces and Presentation—Sound and Music Computing
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1 Introduction
Splash, splatter, babble, sploosh, drip, drop, bloop and ploop! Liq-
uids are noisy and familiar sound sources. Yet, despite the enor-
mous success of physically based fluid simulation in graphics, these
simulations remain inherently silent movies. For most fluid appli-
cations, sound is an afterthought, added using stock recordings.
While replaying “canned fluid sounds” is cheap and sometimes
plausible, it can lack synchronization and physical consistency with
observed dynamics, and may appear repetitive and perhaps irritat-
ing. Furthermore, while offline applications can rely on talented
foley artists to “cook up” plausible sounds at their leisure, future
interactive applications and virtual environments will demand al-
gorithms for automatic procedural sound synthesis. Realistic phys-
ically based sound methods have appeared for vortex-based fluid
sounds [Dobashi et al. 2003] and solid bodies [O’Brien et al. 2001;
James et al. 2006], but we still do not know how to simulate syn-
chronized physics-based sounds for familiar splashes and splatters.

What causes fluid sounds? Perhaps surprisingly, the majority of
sound from a splashing droplet of water arises from harmonic vi-
brations resulting from the entrainment (creation) of millimeter-

scale air bubbles (see Figure 1). Basically, the bubble oscilla-
tor stores potential energy as compressed air and surface tension,
and kinetic energy as surrounding fluid vibrations. The impor-
tant role of these tiny “acoustic bubbles” in water sound genera-
tion has been recognized for nearly a century since pioneering work
by Minnaert [1933], and large texts have since been written about
them [Leighton 1994]. Recently, van den Doel [2005] proposed
bubbles as primitives for fluid sound synthesis, and synthesized
compelling sounds using stochastically excited modal sound banks.

Figure 1: Tiny bubbles (drawn to
scale) are responsible for produc-
ing the characteristic high-frequency
sounds produced by harmonic fluids.
Bubble diameters and vibration fre-
quencies (ωd) are given.
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Figure 2: Synthesizing the sound of pouring water via the linear super-
position of acoustic radiation from 7900 vibrating acoustic bubbles.

Exploiting multiple timescales: Ironically, the complex visible
motion of the air-fluid interface causes relatively little sound, in
part because visible surface motions are inefficient radiators of
sound waves at audible frequencies [Bragg 1920]. Instead, the
fluid shape vibrates harmonically at audio frequencies due to the
microscopic oscillations induced by internal air bubbles, and acts
like a shape-changing 3D loudspeaker. For example, consider visi-
ble fluid movements occurring at graphics rates: a water splash on
a 15cm-sized domain might occur over a 10−1 second timescale,
i.e., a few frames, whereas enormous water sound speeds (cwater≈
1450m/s) allow water sound waves to cross the 15cm domain in
only 10−4 seconds. This thousand-fold difference in animation and
sound wave timescales is why sound waves can propagate through
small fluid bodies almost as if they were standing still. Therefore,
we choose to model sound wave propagation and radiation in fluids
by assuming they are a sequence of static problems. Given the har-
monic nature of bubbles, we can efficiently model sound waves in
the frequency-domain using the Helmholtz wave equation.



Our approach: We propose the first practical physically based
method for synthesizing synchronized harmonic fluid sounds for
computer animation (see Figure 2 for a preview). We model the
creation of bubbles by air entrainment at the fluid surface; the ad-
vection of these bubbles with the fluid flow; the surface vibrations
induced by the bubbles’ vibrations; and the radiation of these vibra-
tions into the air, producing sound (see Figure 3). Our method aug-
ments an existing incompressible fluid flow solver with a particle-
based acoustic bubble model that models bubble entrainment, ad-
vection, vibration, and radiation. By avoiding audio-rate time-
stepping of 3D compressible fluid sound waves (which are expen-
sive, and difficult to parallelize), we can extend existing graphics
fluid simulators with a pleasantly parallel sound model.
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Figure 3: Overview: (1) We first simulate an incompressible fluid flow with
bubbles. For each vibrating bubble we (2) estimate the induced fluid-air
surface vibration and (3) resulting air-domain sound pressure. (4) Finally,
the linear superposition of bubble sound fields are rendered to the listener.

Our main contribution is a parallel algorithm for estimating sound
radiation. Spherical bubble vibrations induce harmonic vibrations
of the fluid-air interface, which leads to acoustic radiation1 which
we approximate by a time-varying linear superposition of harmonic
bubble contributions. The amplitude of each bubble oscillation is
effectively multiplied by the bubble-to-ear acoustic transfer func-
tion, which we model in the frequency domain as the bubble-
located Green’s function of the Helmholtz wave equation for the
instantaneous fluid geometry. These transfer functions can exhibit
complex hundredfold variations which we believe are key to captur-
ing the tonal character of harmonic fluids (see Figure 4). Enabling
inexpensive Helmholtz Green’s function evaluations is achieved by
a novel dual-domain multipole approximation based on a two-stage
fast linear-time boundary-integral solver. In the first stage, we solve
a fluid-domain problem to estimate the normal velocity of the vi-
brating air-fluid interface. In the second stage, we estimate a multi-
pole approximation of the air-domain acoustic radiation for sound
rendering. Key benefits are that the transfer functions need only
be updated at fluid simulation rates (or slower), and the only audio
rate calculation required is the cheap integration of nonlinear bub-
ble vibrations—thus subsequent sound synthesis can be achieved
potentially in real time. We demonstrate harmonic fluid animations
involving thousands of acoustic bubble sound sources, with paral-
lelized sound computation times comparable to fluid simulation.

Figure 4: Observed transfer magnitudes |P | illustrate the complex
bubble-dependent temporal structure, and significant hundred-fold varia-
tions in magnitude. Frequency colors illustrate that transfer magnitude is
not just a function of frequency, but rather has other complex spatial and
temporal dependencies. (Data: “water step” example.)

1A graphics analogy: a point light source of specific frequency (the
acoustic bubble) radiates light out of a tiny air-filled void (the water) into
a highly refractive solid (the air) where it is observed (by the listener). In-
terestingly, because of the large difference in the speed of sound in water
(1497m/s) and air (343m/s), the effective index of refraction is η = 4.4!

Other Related Work: Fluid sounds can arise via numer-
ous mechanisms [Blake 1986] including harmonic bubble-
based fluid sounds [Leighton 1994], vortex based sounds (e.g.,
whistling) [Howe 2002], shock waves (e.g., from explosions), and
through fluid-solid coupling with vibrating solids [Howe 1998].
Perhaps the least familiar but most common, harmonic bubble-
based fluid sounds come with almost all kinds of fluid movement:
splashing or pouring water [Franz 1959], rain drops [Longuet-
Higgins 1990], babbling brooks [Minnaert 1933], etc. Bubbles
have received enormous attention due to vibration-based sound ra-
diation and other exotic behaviors, such as cavitation (which can
pit propellors) and even their ability to give off light via sonolu-
minescence! Bubble-related sounds have been studied for about a
century, and people understand, albeit not entirely, the basic mech-
anisms for sound emission. It was realized nearly a century ago that
it is hard for water to make any sound by itself [Bragg 1920], and
Minnaert [1933] described the important role of harmonic acoustic
bubbles. Continued work has revealed that most of the sound arises
not from the initial impact of fluid but from small bubbles entrained
from the resulting surface cavity [Pumphery et al. 1989; Longuet-
Higgins 1990; Oguz and Prosperetti 1990]. The acoustics commu-
nity has studied acoustic bubbles extensively because of their wide
importance, e.g., in computational ocean acoustics [Jensen 1994],
in estimating rainfall rates for climate models [Urick 1975], and un-
derstanding sounds from complex bubble plumes in breaking waves
and surf [Deane 1997]. However, we still lack practical algorithms
for synthesizing harmonic fluid sounds.

On the other hand, the computer graphics community has devel-
oped a sophisticated array of computational methods for simulat-
ing fluids in computer animation [Foster and Metaxas 1996; Stam
1999; Enright et al. 2002; Osher and Fedkiw 2003]. Because of
their visual importance, numerous methods for animating bubbles
and foam have appeared [Foster and Metaxas 1996; Greenwood and
House 2004; Zheng et al. 2006; Cleary et al. 2007; Thuerey et al.
2007; Kim et al. 2007; Kim and Carlson 2007; Hong et al. 2008].
However, no methods currently address fluid sound generation.

Realistic sound rendering in computer graphics has addressed au-
ralization of sound sources in virtual environments [Begault 1994;
Kleiner et al. 1993; Vorlander 2007] especially for interactive vir-
tual environments [Funkhouser et al. 1999; Tsingos et al. 2001;
Tsingos et al. 2004], however, less work has addressed the phys-
ically based modeling of realistic sound sources. Important ex-
ceptions include vibrations of otherwise rigid objects, often using
harmonic modal vibration methods [van den Doel and Pai 1996;
van den Doel et al. 2001; O’Brien et al. 2002; Bonneel et al. 2008].
While fluid vibrations are locally harmonic, they exhibit long-time
nonlinearities, and the fluid surface vibrations are themselves un-
knowns. We propose a method to estimate these vibrations, af-
ter which existing frequency-domain radiation solvers based on
equivalent multipole sources, such as Precomputed Acoustic Trans-
fer [James et al. 2006], could in principle be used. However, in
practice significant complications arise due to temporal coherence,
etc., and we instead propose an all-at-once dual-domain solver. For
more general surface vibrations in computer animation, ray-based
Rayleigh sound approximations (which ignore diffraction effects)
have been used [O’Brien et al. 2001]. However, incompressible
fluid solvers are incapable of producing predominantly harmonic
sounds without the help of bubbles [Bragg 1920], and therefore ap-
plying ray-based renderers to existing fluid animations (at audio
rates) will not produce correct fluid splashing sounds [Franz 1959].

To provide realism at minimal cost, recorded fluid sounds are of-
ten used to produce realistic sounds, e.g., of splashes and drops,
by event-based sound synthesizers in interactive environments
[Takala and Hahn 1992], and in offline animations by foley artists
(c.f. [Carlson et al. 2004]). Sounds have also been used to sonify



CFD and other data for multi-modal data exploration and visual-
ization purposes [McCabe and Rangwalla 1994; Childs 2001]. Re-
cently Imura et al. [2007] proposed an ad hoc bubble-based fluid
sound method that augmented an SPH fluid simulation with data-
driven bubble sounds based on recordings of individual bubbles.
Unfortunately such methods are not physically based, and can not
capture time-varying spatial structure of 3D sound radiation.

Stochastic sound models and granular synthesis are often used to
produce noise-like fluid sounds such as waterfalls, rainfall, and
ocean waves [Cook 2002]. Continuous stochastic models can be
constructed from input sound files, and can synthesize new sound
textures, e.g., of babbling brooks [Miner and Caudell 2005]. Van
den Doel proposed using harmonic bubble oscillator sound banks to
produce stochastic bubble-based fluid sounds [van den Doel 2005].
Again, such methods are not physically based and/or lack integra-
tion with 3D fluid simulation and sound radiation models.

Finally, vortex-based fluid sounds, e.g., of whistling, have been syn-
thesized by Dobashi and colleagues [2003; 2004] by a clever com-
bination of Lighthill’s theory of vortex-based sound [Howe 2002]
and data-driven techniques. Since both vortex and harmonic fluid
sounds can be present, our techniques are complementary.

2 Background: Incompressible Fluid Solver
Our acoustic bubble simulation is designed to augment existing
incompressible liquid solvers familiar to the graphics commu-
nity [Foster and Metaxas 1996; Stam 1999; Foster and Fedkiw
2001; Enright et al. 2002]. In this paper, we employ the Euler equa-
tions governing inviscid flow [Osher and Fedkiw 2003],

0=
∂u

∂t
+ u · ∇u +

1

ρ
∇p subject to 0=∇ · u, (1)

which relate the liquid’s velocity (u), pressure (p) and density (ρ).
Our approach does not depend critically on any particular fluid
simulation method. However, in our implementation we use the
FLIP/PIC method [Zhu and Bridson 2005], since its fluid particles
are convenient markers to track bubble creation. We compute the
level set function, φ(x) (negative in fluid, and positive in air), us-
ing the method proposed in Adams et al. [2007], with redistancing
performed at each time step using a fast marching method [Osher
and Fedkiw 2003]. We update the particle-based bubble simulation
after each fluid time step using a one-way coupling approximation.

3 Modeling Acoustic Bubbles
Acoustic bubbles have received significant attention, and we refer
the reader to the text by Leighton [1994] for a comprehensive in-
troduction. Unfortunately their integration into 3D fluid simulators
leads to a number of modeling details which need to be addressed
(see Figure 5). We now summarize the acoustic bubble model used
to implement Harmonic Fluids.
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Figure 5: Life of an acoustic bubble

3.1 The Spherical Acoustic Bubble

Bubbles that generate audible sounds are typically quite small (≈ 1
mm), and in that limit, surface tension forces are strong enough

to make the bubble essentially spherical. The spherical air bub-
ble is an excellent oscillator, pulsating after an initial entrainment-
related impulse. The simplest linear vibration model assumes an
ideal, spherically pulsating, mono-frequency bubble, and was pro-
posed originally by Minnaert [1933]. It models a spring-bob system
where the restoring “spring” force is due to air pressure and surface
tension, and inertia is due to the effective mass of the surrounding
liquid. Consider a pulsating spherical bubble with radius

r(t) = r0 + q(t), (2)

where r0 is the static radius (which may change slowly), and
q = q(t) is a small fluctuation (|q| � r0) due to rapid spherical
pulsations. An established linear model of the harmonic pulsations
is the simple harmonic oscillator [Leighton 1994]:

q̈ + 2βq̇ + ω2
0q = Fb/m

rad
b , (3)

where ω0 is the bubble’s resonant frequency (in radians/sec); β is
the damping rate; Fb is the external forcing due to liquid pressure
fluctuations and entrainment; and mrad

b = 4πr3
0ρ is the bubble’s

effective radiative mass. In practice, we hear the damped natural
frequency ωd =

p
ω2

0−β2; sample values were given in Figure 1.
Formulae for ω0 and β=β(ω0, r0) are provided in Appendix A.

3.2 Exciting Bubble Vibrations

At the moment of bubble entrain-
ment, the fluid-trapped air is sub-
jected to an additional pressure:
pressure jumps from just air pres-
sure, p0, to one also involving surface tension, p0 +pσ , where pσ =
2σ
r0

is the extra surface tension (“Laplace”) pressure [Leighton
1994]. For tiny acoustic bubbles, the surface tension pressure jump
can be enormous. We model bubble vibration forcing using an ini-
tial pressure-jump impulse, and ignore later forcing. This corre-
sponds to forcing the bubble vibration equation (3) with the right-
hand side given by 2σ

r0m
rad
b

δ(t) (for t= 0 entrainment), and would

yield the oscillator response, q(t) = 2σ

r0m
rad
b

ωd
e−βt sinωdt. Since

the frequency and damping coefficients of (3) are time dependent,
in practice we integrate the vibrations numerically using the mid-
point method. To soften the attack (c.f. [van den Doel et al. 2001]),
we smoothly blend the sound in over a ∆t= C

β
window. We use

C= ln(0.85) to blend until the amplitude decays to 0.85 of its ini-
tial amplitude; our blending function is given by (39) in Appendix
A. By tuning these parameters via comparisons to recordings, our
vibration responses appear plausible (see Figure 6).

Figure 6: Comparison of bubble excitations: (Left) Three recorded bub-
ble sounds (in blue) illustrating typical bubble excitation responses and
variations; and (Right) the response of our bubble model. Recordings
were obtained from individual droplets falling 0.5m from a faucet (at ≈ 2
droplets/sec) into a water-filled container (roughly 30cm×30cm×15cm).

3.3 Particle-based Bubble Advection

Identical to previous works, we model bubbles as buoyant particles
advected in the incompressible flow [Greenwood and House 2004;
Cleary et al. 2007]. Each tiny bubble is advected independently,
ignoring complex bubble-bubble interactions. We model the bubble



motion as a particle of effective mass mb = 4
3
πr3

0ρ (of the liquid
hole), with applied pressure, gravity and drag forces,

fp = −KpVb∇pi +mbg (4)

fd =
1

2
CdρAb(u− vb)‖u− vb‖ (5)

where µf is fluid viscosity, u = u(xb) is the fluid velocity at bub-
ble’s location, xb, the drag coefficient is Cd = 0.2, the bubble sur-
face area is Ab = 4πr2

0 , its volume is Vb = 4
3
πr3

0 , and Kp = 0.8
in our examples. The drag force model is suitable for tiny acoustic
bubbles which have Reynolds number,Re=2ρ‖u−vb‖r0/µf�1.
After each fluid time step, we integrate the particle’s motion using
the mid-point method.

3.4 Time-dependent Bubble Frequency

The simple acoustic bubble model (3) uses a fixed frequency ω0

(and damping β). However, a perceptually important feature of
moving bubbles is that their frequency can vary significantly over
time, with bubble sounds often having a characteristic rising pitch,
e.g., the familiar “bloooop?” of a water drop (see Figure 7). Phe-
nomenologically speaking, as the bubble approaches the fluid sur-
face, the effective vibrational mass mrad

b of the surrounding fluid
decreases (since there is less of it to move), whereas the stiff-
ness kb (due to surface tension and air compression) is relatively
unchanged, thus producing an increase in the resonant frequency,
ω2

0 = kb/m
rad
b . Models exist for rising bubble pitch as a function

of distance to a planar liquid surface [Strasberg 1953], but can only
provide about a

√
2 frequency multiplier—in our experiments, we

often observed 2–3 times frequency multipliers likely due to com-
plex local fluid geometry (see Figure 7).

Figure 7: Water drop spectra: (Left) A recording of a single-bubble water
drop experiment; (Right) the spectra of a single-bubble fluid sound synthe-
sized from a digital mockup. Each water droplet fell from a height of ≈0.5
meters into a pool of water. Both spectra exhibit qualitatively similar struc-
tures, with clear evidence of rising pitch.

To support nonplanar interface geometry and larger pitch shifts2 we
propose an ad hoc model based on the bubble’s level set values,
φ. Our frequency-change model captures two behaviors: (1) the
bubble frequency does not change until it approaches the surface,
and (2) the faster the bubble travels to the surface, the faster its
pitch changes. At each sound synthesis time step we increment the
natural frequency, ω0, by

∆ω = K∆ ωd e
−η
“
φ
φ0
−1
”

∆φ, (6)

where ∆φ is the distance change since the last timestep, φ= φ(t)
is the (negative) distance to the fluid surface (from the fluid simu-
lator); φ0 is a distance parameter controlling how close to the in-
terface the bubble must be to undergo pitch shift, and η controls
the spatial rapidity of change; and K∆ controls the magnitude of
frequency changes. Following ω0 modification, we update depen-
dent parameters (such as ωd and β). In our results, we always use
K∆ = 72.95 and η = 1.24, but adjust φ0 (between −0.008 and
−0.025 meters). Our parameters (K∆ and η) were tuned manually
by performing numerous comparisons to real-world experiments.

2and to avoid estimating the bubble frequency as an eigenvalue of a fluid-
bubble interaction problem [Ohayon 2004]

Qualitatively similar results can be obtained (see Figure 7). Finally,
since φ is only evaluated at fluid time-stepping rates, for sound syn-
thesis we temporally interpolate φ values to audio rates using a cu-
bic spline; a low-pass filter is also used to remove temporal noise
artifacts introduced by the fluid discretization.

3.5 Modeling Acoustic Bubble Entrainment
To compute plausible fluid sounds, the entrainment of bubbles by
estimated fluid-air mixing must be done so as to produce bub-
bles with appropriate distributions of radii (frequencies), ampli-
tudes, and spatial and temporal structure. Once a bubble is cre-
ated and an initial impulse applied, it can be simulated and soni-
fied. Unfortunately, the bubble entrainment process is terribly com-
plex [Leighton 1994] and computationally difficult to resolve spa-
tially and temporally. Therefore we propose a simplified model of
the acoustic bubble creation process. Similar to prior work [Green-
wood and House 2004], we use marker particles to track where bub-
bles should be created, and our spherical acoustic bubbles are driven
by one-way coupling to the fluid simulator. Primary differences
in our work (“bubble seeds,” bubble creation rates, and modeling
of radii and spectra) result from our attempts to make the bubbles
sound more plausible. We defer the interested reader to Appendix B
for the details of our acoustic bubble entrainment model, and now
proceed with sound radiation modeling.

4 Modeling Fluid Sounds
Sound radiation is modeled as a superposition of individual bub-
ble sounds. For each harmonic bubble, we first estimate the in-
duced fluid-air interface vibration, then next estimate the radiated
air-domain sound waves that travel to the listener. Our multiple
timescale approximation models these waves in the frequency do-
main. We now describe how to estimate the time-harmonic acoustic
pressure field, P (x, t) = P (x)e+iωt, where P (x) is the (slowly
time varying) spatial part satisfying the Helmholtz equation, and ω
is the frequency of an acoustic bubble.

Listening to Helmholtz Green’s functions: Given a bubble of
frequency ω at position xb in the fluid domain Ωf , we use the
harmonic Green’s function P (x; xb) ∈ C of the Helmholtz wave
equation on the unbounded region comprised of both fluid and air
domains, Ω=Ωf

S
Ωa:

(∇2 + k2(x))P (x; xb) = Sb δ(x− xb), x∈Ω, (7)
where the spatially varying wavenumber is

k(x) =

(
ω/cf , x∈Ωf
ω/ca, x∈Ωa

(8)

and c is the speed of sound (see Table 3). The Green’s function
is subject to an homogeneous Neumann boundary condition on the
solid interface,

∂nP ≡
∂P

∂n
= 0, x∈Γs (9)

which corresponds to a “no vibration” boundary condition of zero
surface normal velocity, vn=n · v(x), since ∂nP ≡−iωρ vn; and
the Sommerfeld radiation condition at infinity [Howe 1998]. The
bubble’s source strength Sb (for unit vibration amplitude) is

Sb = −4πρω2r2
0 (10)

(see derivation in Appendix C). We will often refer to P as the
bubble-to-ear acoustic transfer function, or simply “transfer.” With
this definition, we could approximate the sound contribution at the
listening position, x∈Ωa, due to a single bubble via

|P (x; xb)| q(t), x∈Ωa (11)
(or more sophisticated auralizations (see §6)). Unfortunately, in
practice we desire to solve the Helmholtz PDE (7) for every bubble
in the scene at each fluid time step. To make matters worse, since
Ω is the unbounded region, efficient computation and evaluation of
this function (for audio rendering) is a practical concern.



5 Dual-domain Multipole Radiation Solver
We now describe a novel Helmholtz boundary integral solver for
rapid evaluation of the acoustic pressure P (x; xb) to enable sound
synthesis from harmonic fluids. We use an efficient two-stage ap-
proximation to any bubble’s Helmholtz Green’s function that ex-
ploits the common case wherein fluid vibrations are affected by the
surrounding air only weakly. The solver is summarized in Figure 8.
Readers wishing to skip this section’s heavier mathematical details
can proceed to §6 “Sound Synthesis Pipeline.”

Fluid pressure P (f) problem Air pressure P (a) problem
Figure 8: Overview of dual-domain Helmholtz formulation: (Left) Pass
#1 solves the fluid-domain problem to estimate the fluid’s acoustic pres-
sure P (f) assuming that fluid on the solid boundary Γs can not vibrate
(∂nP (f) =0), and that fluid at the air interface is free to move (P (f) =0).
In addition to the singular bubble source at xb, numerous advected regular
sources also contribute to P (f); their expansion coefficients cf are least-
squares estimated to match the boundary conditions. (Right) Pass #2 solves
the air-domain problem to estimate the air’s acoustic pressure P (a) assum-
ing that air on the solid boundary Γs can not vibrate (∂nP (a) = 0), but
that vibrations on the air interface Γa match the computed fluid vibrations
(∂nP (a) =∂nP (f)). The air pressure P (a) is described by a larger num-
ber of advected singular multipole sources, whose expansion coefficients ca
are least-squares estimated to match the Neumann boundary conditions.

5.1 Dual-domain Helmholtz Approximation

Let us now consider how to break the computation of the fluid-
air Helmholtz Green’s functionG(x; xb) into two Helmholtz prob-
lems with one-way coupling.

Pass #1: First, we compute a fluid-domain Green’s function,
P (f) =P (f)(x; xb),

(∇2 + k2
f )P (f) = Sbδ(x− xb), x∈Ωf , (12)

subject to the homogeneous boundary conditions on the fluid-air
boundary, Γa, and the solid-air boundary, Γs,

P (f) = 0, x∈Γa, (13)

∂nP
(f) = 0, x∈Γs. (14)

Pass #2: Second, given an approximation of the fluid-domain
Green’s function pressure, P (f), we can evaluate its normal deriva-
tive on the fluid-air interface (which specifies the surface normal
velocity, vn), and use that as an input to estimate the radiation
into the surrounding air. The resulting air-domain Green’s func-
tion, P (a)(x; xb) satisfies the unforced Helmholtz equation in air,

(∇2 + k2
a)P (a)(x; xb) = 0, x∈Ωa, (15)

subject to the Sommerfeld radiation condition at infinity, and

∂nP
(a) = ∂nP

(f), x∈Γa, (16)

∂nP
(a) = 0, x∈Γs, (17)

which are derivative (velocity) boundary conditions, with the all
important nonzero values on the vibrating fluid interface, Γa, and
just zero values on any supporting rigid interface, Γs. Finally, our
P (a) model is used to evaluate P (x; xb) in Ωa for sound rendering.

5.2 Pass #1: Interior Fluid-domain Solver
We approximate the Helmholtz problems using Trefftz-style equiv-
alent source methods [Kita and Kamiya 1995; Ochmann 1995;
James et al. 2006]. In each pass, the domain PDE is satisfied us-
ing a series expansion of fundamental solutions to the Helmholtz
equation, and the boundary conditions are approximated in a least-
squares sense to estimate expansion coefficients.

Pressure Expansion: To satisfy (12) for the fluid-domain
Helmholtz Green’s function, we introduce the pressure expansion

P (f)(x; xb) = s(x; xb) + U(f)(x) cf , (18)
where s is the singular free-space Helmholtz Green’s function,

s(x; xb) = −e
−ikfR

4πR
Sb, (R=‖x− xb‖) (19)

satisfying the fluid Helmholtz equation

(∇2 + k2
f ) s(x; xb) = Sbδ(x− xb), (20)

and the Sommerfeld radiation condition; the second part of (18) is
a weighted combination of nf nonsingular functions,

U(f)(x) cf =
h
ψ

(f)
1 ψ

(f)
2 . . . ψ(f)

nf

i
cf (21)

where cf ∈Cnf are weights, and U(f) is a row matrix of functions,
ψ(f), each satisfying the fluid Helmholtz equation (without regard
for Γ boundary conditions)

(∇2 + k2
f )ψ

(f)
j (x) = 0, x∈Ωf . (22)

Since the P (f) expansion (18) satisfies the Green’s function PDE
in (12), it remains only to select a sufficiently complete basis,
U(f), then find coefficients, cf , to satisfy the homogeneous bound-
ary conditions (13-14). We propose using the regular spheri-
cal Helmholtz solutions [Gumerov and Duraiswami 2005] (other
choices are possible),

ψ
(f)
j (x; x

(f)
j ) = j`(kfR) Y m` (θ, φ), (23)

where ψ(f)
j is positioned at x

(f)
j (we describe point-source selec-

tion later in §5.4),R = ‖x−x
(f)
j ‖2, Y m` ∈C are the spherical har-

monics, and j`(kfR) are spherical Bessel functions of the 1st kind,
e.g., j0(z)= sin z

z
, j1(z)= sin z

z2 −cos z
z

, j2(z)=( 3
z2−1) sin z

z
−3 cos z

z2 .
In our implementation, we use basis functions up to and including
quadrupoles (`=0, 1, 2), so our n-point multipole expansions have
nf =9n unknown complex-valued coefficients.

Collocated Least-Squares Estimation: Given the homogeneous
boundary conditions on P (f) (13-14), we collocate the boundary
condition equations at N boundary points to obtain N equations
involving the cf ∈Cnf unknowns, then estimate cf using weighted
least squares. Collocation points are chosen as mesh vertices (dis-
cussed in §5.5), and each sample point, xi, has normal, ni, and an
effective area, ∆ai. The relevant equations for vertex point i are

U(f)(xi) cf = −s(xi), when xi ∈ Γa (24)

∂niU
(f)(xi) cf = −∂nis(xi), when xi ∈ Γs (25)

for i = 1 . . . N . Each equation is weighted by
√

∆ai, to assemble
the N -by-nf linear least-squares problem,

Acf = b ⇔
»

Aa

αAs

–
cf =

»
ba
αbs

–
. (26)

The relative scaling parameter, α, balances the importance of pres-
sure versus pressure derivative constraints; in our examples (with
approximately unit-sized computational domains), we use the ratio
of interfacial area, α=Areas/Areaa. After robust construction and
least-squares solution of (26) for cf ∈Cnf (discussed in §5.6), we
can estimate the harmonic fluid-surface vibrations (see Figure 9).



Bubble

5 quadrupoles 10 quadrupoles 20 quadrupoles
Figure 9: Estimated surface velocity (vn ∝ ∂nP (f)) computed from the
fluid-domain solver (pass #1). Approximations are shown for differing num-
bers of regular quadrupole sources, and degrees of convergence.

Discussion: The boundary integral equation associated with the
least-squares problem (26) is related to their normal equations, and
can be written as»Z

Γa
U
H

U dΓ + α
2
Z

Γs
U
H
n Un dΓ

–
cf = −

Z
Γa

U
H
s dΓ−α2

Z
Γs

U
H
n sn dΓ

(where U = U(f), Un = ∂nU
(f), sn = ∂ns). For reasons of

solution efficiency and accuracy, we choose to work with the over-
determined least-squares problem (26) instead of forming the nor-
mal equations associated with the matrix boundary integrals.

5.3 Pass #2: Exterior Air-domain Solver

The air-domain solver mirrors the fluid domain solver with a couple
exceptions. Once we have cf , we can evaluate the ∂nP (f) bound-
ary condition on Γa (describing the surface velocity; see Figure 9),
and then solve to get P (a) in the surrounding air (see Figure 10).
We approximate the exterior radiation solution P (a) to (15) by a
set of singular multipole sources, whose coefficients are estimated
by fitting pressure derivative (normal velocity) data, which is zero
except for fluid surface vibrations, ∂nP (f)|Γa .

Bubble

40 quadrupoles 60 quadrupoles 80 quadrupoles
Figure 10: Volume-rendered sound pressure, |P | estimated using the
dual-domain solver. Varying quadrupole source counts for the air-domain
solver help illustrate visual convergence of the method.
Pressure Expansion: We again introduce a pressure expansion,
but now use fundamental solutions of the air Helmholtz equation:

P (a)(x; xb) = U(a)(x)ca, (27)

where U(a) represents na singular multipole basis functions,

U(a)(x)ca =
h
ψ

(a)
1 ψ

(a)
2 . . . ψ(a)

na

i
ca (28)

the ca∈Cna are weights, and each basis function ψ(a)
j satisfies the

air Helmholtz equation (and Sommerfeld radiation condition),

(∇2 + k2
a)ψ

(a)
j (x) = 0, x∈Ωa. (29)

Since the P (a) expansion (27) satisfies the Green’s function PDE
in (15), it only remains to select U(a) then find coefficients, ca,
to satisfy the ∂nP boundary conditions. The appropriate basis
functions here are singular multipole solutions to the free-space air
Helmholtz equation (as in [James et al. 2006]),

ψ
(a)
j (x; x

(a)
j ) = h

(2)
` (kaR) Y m` (θ, φ), (30)

where the source is positioned at x(a)
j ,R = ‖x−x

(a)
j ‖2, and where

h
(2)
` are spherical Hankel functions of the 2nd kind; h(2)

` (z) =
j`(z)−iy`(z)∈C, where j` and y` are real-valued spherical Bessel
functions of the 1st and 2nd kind [Abramowitz and Stegun 1964].
Again we use quadrupole-order multipoles at each point, so an n-
point multipole expansion will have na=9n unknown coefficients.

Collocated Least-Squares Estimation: We estimate the coef-
ficients ca by matching the boundary conditions (16-17) using
weighted least squares. The equation for collocation sample i is

∂niU
(a)(xi) ca = −∂niP

(f)(xi), when xi ∈ Γa (31)

∂niU
(a)(xi) ca = 0, when xi ∈ Γs (32)

which we then weight by
√

∆ai to obtain the over-determined N -
by-na linear least-squares problem,

Ã ca = b̃ ⇔
»
Ãa

Ãs

–
ca =

»
b̃a
0

–
. (33)

Note that no relative Neumann-vs-Dirichlet scaling parameter (α)
is needed here, since only Neumann ∂nP constraints exist. Finally,
we estimate ca∈Cna using the robust least-squares solver (§5.6).

5.4 Source Position Selection
Multipole placement affects the quality of the basis functions used
in the solver. Traditional equivalent source methods often optimize
source placement to increase accuracy [Ochmann 1995; James et al.
2006], however temporally incoherent source positions can ruin
frame-to-frame coherence and lead to noise in synthesized sounds.
Our numerical experiments indicate that a sufficient number of ran-
domly selected point sources can achieve a plausible sound. To
avoid discontinuities, we randomly select fluid particles as point-
source locations when the bubble is created. To ensure both (a)
temporally coherent basis functions ((23) and (30)) and (b) source
positions (and singularities) that remain inside the complex splash-
ing fluid, we advect source positions after each fluid time step.

5.5 Sampling Fluid Geometry
After each fluid time step, we extract an N -vertex triangle mesh of
the fluid boundary using marching tetrahedra [Chan and Purisima
1998]; in our examples, mesh resolutions match that of the fluid
grid. Each mesh vertex is used as fluid boundary sample at which
to impose boundary condition constraints; for vertex i = 1 . . . N
we evaluate and cache the position xi, normal ni, and effective
area ∆ai. Sampling fluid geometry can also introduce temporal
artifacts in estimated transfer, but these are addressed by temporal
filtering/interpolation during the sound rendering process.

One computational difficulty arises when bubbles (or ψ(a)) are very
close to the fluid boundary, since this can lead to singularities in
(19) and (30). Note that singularities are intrinsic to the problem
formulation, since bubbles will always rise to the water surface. In
practice we choose to expand the fluid surface slightly to regular-
ize such singularities. In our examples, the boundary isosurface is
expanded by one fluid-voxel width by extrapolating the level-set
isosurface using the fast marching algorithm. While the accuracy is
sacrificed slightly, it is more robust numerically, and we found the
sound changes imperceptible. The latter point is perhaps unsurpris-
ing since vibrations often decay significantly by the time bubbles
reach the surface.

5.6 Temporally Coherent Least-Squares Estimation
The under-determined linear systems (26) and (33) can be nearly
singular, and must be solved using a robust least-squares solver.



However, common solvers based on the Truncated Singular Value
Decomposition (TSVD) should not be used since they can introduce
temporal coherence problems: small changes in rank between two
time-steps can lead to large magnitude differences in the solution,
c (since the problem is ill-posed). Instead, we use a ridge regres-
sion technique with a QR solver (see §12.1 of Golub and Van Loan
[1996]). For example, given our N -by-m linear system, Ac = b,
the normal equations solution is c = (AHA)−1Ab but AHA may
be near rank deficient. The ridge-regression solution is obtained as
c = (AHA + ε2I)−1Ab for a small ε>0. Unfortunately explic-
itly forming AHA can lead to a loss of accuracy (c.f. §5.2 Discus-
sion). We instead compute c by solving the related (N +m)-by-m
least-squares problem, »

A
εI

–
c =

»
b
0

–
, (34)

using LAPACK’s double-precision QR-based least-squares solver
(zgels). The resulting c values (and thus the acoustic transfer
pressure values) are more temporally coherent, provided that the
same ε value is used; we always use ε=10−8‖A‖F .

Linear-time Cost: Since the least-squares solver has complexity
O(m2N), the total dual-domain multipole solver cost is O(n2

fN +

n2
aN), which is linear in the number of boundary samples, N . In

our examples, nf < na � N , and the dual-domain solves required
only 1–4 sec/bubble.

5.7 Optimizations and Extensions

Parallelization: Evaluating independent bubble sound sources is
a pleasantly parallel computation. In our fluid preprocess, we im-
plemented the dual-domain multipole radiation solver as a service
running on an 80-core Xeon cluster. After each fluid time step, the
fluid geometry is updated, the cluster computes every active bub-
ble’s transfer function coefficients, ca, using the radiation solver.
Since the simulation of fluids and bubbles are not dependent on ra-
diation calculations, the fluid simulator can advance to the next time
step while the acoustic transfer is evaluated.

Adaptive Transfer Evaluation: Evaluating transfer coefficients
for each bubble at every time step can be a bottleneck when thou-
sands of bubbles exist. Some simple observations can reduce these
bottlenecks without compromising accuracy:

1. Avoid transfer computations for inaudible bubbles: Our
entrainment-forced acoustic bubble exhibits exponentially de-
caying vibrations which quickly become inaudible especially
in the presence of other bubble entrainment events. In prac-
tice, we stop the radiation solve for a bubble after its ampli-
tude decays to 1/1000 of its initial amplitude, e.g., after ap-
proximately T =− ln 0.001/β.

2. Temporally adaptive transfer evaluation avoids computing
transfer for bubbles at every timestep. When a bubble’s am-
plitude decays (roughly as e−βt), we also decrease transfer
sampling rates. In our implementation, we use a frequency-
dependent sampling rate which roughly gives the sample step
size as ∆tsample=∆tfluid e

βt, where ∆tfluid is the average
fluid time-step size. See Figure 11.

Triple-Domain Problem: We have con-
sidered a dual-domain fluid-air problem
where solid objects are abstracted as a
thin mathematical interface, Γs. How-
ever, the sound radiation model could also include nontrivial solid
objects, e.g., for splashing objects (see “Splash” example) or a con-
tainer of finite thickness. In such cases, the interior fluid-domain
solve is identical except for the modified fluid-solid boundary Γs.
The exterior air-domain problem must be modified to use the larger

Figure 11: Adaptive transfer
evaluation for three bubbles of
different frequency. Bubble life-
times reflect whether they reached
the surface, or became inaudi-
ble. We extract a conservative 3×
speedup; however, coarser sam-
plings result in greater speedups.

air-(fluid/solid) interface, and rigid-object scattering can be mod-
eled by adding fixed singular sources ψ(a)

j in the solid region.

6 Sound Synthesis Pipeline
We use a two-pass implementation with (1) a fluid and transfer pre-
process followed by (2) a sound synthesis phase.

Fluid Preprocess: Algorithm 1 summarizes the main Harmonic
Fluids preprocess. After each fluid timestep (line 4), we advect ex-
isting bubbles, B (line 5) and any multipole-solver source points P

for ψ(f) and ψ(a) (line 6). In line 7 we create new bubbles (up-
dating marker positions, bubble seeds, etc., as described in Ap-
pendix B), then (line 8) randomly sample new multipole source
points for any new bubbles. Level set values φ are recorded (line 9)
to model frequency variations (§3.4) during sound synthesis.

Parallel transfer computations are then initiated, but only when jobs
from the last timestep have completed (line 10). We first mesh
the fluid’s slightly expanded boundary using marching tetrahedra
(§5.5), then extract the vector of mesh vertex positions, normals and
effective areas, (x,n,a). After initializing the remote-procedure-
call (RPC) service (line 13), we launch transfer computation jobs on
the remote compute nodes using RPC, and send (line 15) each bub-
ble’s parameters (ωd, ξ, . . .), multipole-solver source points (Pbub),
and surface samples (x,n,a). Each bubble’s transfer job invokes
the dual-domain multipole solver (§5), first solving for cf using
(26), then solving for ca using (33); however, only the small vec-
tor ca of multipole expansion coefficients are recorded. Adaptive
transfer computation (§5.7) allows processing only a subset of bub-
bles (line 14). Finally, once all bubbles have been scheduled for
parallel computation, we proceed with the next fluid time step. In
our implementation, bubble vibrations and frequency shift (§3.4)
are not evaluated in the fluid/transfer preprocess.

Algorithm 1: FluidPreprocess()

begin1
while simulating do2

t← t+ ∆t;3
timestep fluid ();4
advect bubbles (B);5
advect source points (P);6
CreateBubbles (B, M, S, t); // (see Appendix B)7
create new source points (P);8
record bubble φ values (B);9
if bubbles exist then10

mesh← mesh fluid boundary ();11
(x,n,a)← pointsNormalsAreas (mesh);12
for bub ∈ bubblesNeedingTransfer(B) do13

eval transfer (bub, Pbub, (x,n,a));14

end15



Example
Fluid & Bubble Simulation Dual-domain Radiation Solve

time Scale (cm) Voxels # of Fluid # of # of Frequency min–max #sources <Fit Error> max kL
Particles Bubbles Solves range (Hz) Fluid Air Fluid / Air Fluid / Air

Droplet 6.4s 14×18×14 70×90×70 1965886 14 2280 500–4K 30–60 80–120 0.06 / 0.18 0.5 / 2.1
Splash 1.5s 45×50×45 90×100×90 3717120 127 25472 300–6K 30–60 80–120 0.08 / 0.24 1.9 / 8.4
Pouring 5.0s 25×40×25 50×80×50 668640 7896 363457 300–6K 30–60 50–80 0.10 / 0.32 1.2 / 5.3
Water Step 8.6s 120×36×72 100×30×60 393376 26657 616846 300–5K 25–60 40–80 0.08 / 0.22 2.0 / 8.7
Table 1: Example Statistics including temporal duration, grid dimensions, voxel resolutions, the number of FLIP fluid particles and bubbles. Ironically
“Water Step” has the fewest fluid particles but the longest fluid simulation time (see Table 2); note that particles are “recycled” at the inlet when they exit
the computational cell. “Pouring” and “Water Step” have the most bubbles and transfer solves. Frequencies range from about 300 Hz to 6000 Hz. The
highest frequency radiation problems are harder to approximate, since for the same domain lengthscale, L, they span more wavelengths per domain, i.e., have
higher kL values. We use roughly twice as many quadrupole sources for the highest frequency than the lowest (and linearly interpolate the rest). Similarly,
the air-domain problem’s smaller wavelengths make it harder to approximate than the fluid-domain problem, i.e., kaL ≈ 4.4kfL, and therefore we use more
sources for the air domain than the fluid domain. Nevertheless, fitting errors for the least-squares problem (average relative residual error, ‖Ac−b‖2/‖b‖2)
were always larger in the air domain. Maximum kL values quantify the difficulty of the highest-frequency Helmholtz approximation problems.

Sound Synthesis: The sound synthesis stage is much simpler and
faster than the fluid preprocess. First, serialized time-series data
from the fluid preprocess is loaded, which includes each bubble’s
trajectory, sampled level-set φ values, and multipole expansion co-
efficients ca, etc. Given the ear trajectory, the bubble-to-ear transfer
functions can be quickly evaluated (in parallel) at the listening po-
sition for times when ca are available. At each audio-rate time step
(of size δt = 1/44100 seconds), the active set of created/deleted
bubbles is updated using loaded data, bubble vibrations are time-
stepped (including frequency shifts (§3.4)), and the ear position de-
termined. Each bubble’s sound contribution is accumulated, which
involves interpolating/filtering its bubble-to-ear transfer function
(to the current time), multiplying by its complex-valued oscilla-
tor value q̃(t) (such that q is the real part of q̃), and applying any
head-related transfer function (HRTF) [Vorlander 2007]. In our im-
plementation, amplitude filters are used to smoothly blend bubble
sound contributions in and out of the sound track since small arti-
facts can contribute to noise artifacts, especially when thousands of
bubbles are present. We synthesize stereo sounds, and use an HRTF
model [Brown and Duda 1998] (instead of the using the transfer
modulus as in (11)) to exploit the bubble-to-ear transfer function
phase for stereo sound:

sound(t) =
X
b∈B

HRTF(P
(t)
b q̃

(t)
b ; x

(t)
b −x(t)

ear, ω
(t)
b ) (35)

where the bubble position and frequency parameterize the HRTF.

7 Results
We describe results for four different water sounds: (1) falling water
drops, (2) water pouring from a faucet, (3) water splashing from a
falling rigid object, and (4) a babbling water step. Please see our
accompanying video for all animation and sound results. Statistics
are in Table 1, timings in Table 2, and constants in Table 3.

Parallel Implementation: For all our examples, fluid and bubble
simulations run on a 16-core 2.4 GHz Xeon node using C++ code.
The sound radiation code is compiled into an independent RPC ser-
vice, and is run on eight 8-core 2.66 GHz Xeon and one 16-core
2.4 GHz Xeon Linux machine. These two parts run in a parallel
producer-consumer mode. The fluid simulation generates bubbles
and samples surface boundaries as it advances, and launches paral-
lel dual-domain radiation solves using RPC. In our examples, paral-
lel radiation solves complete in less time than each fluid time step,
so that parallel sound synthesis adds no additional wall-clock time
to fluid simulation. As shown in Table 2, even for simulations with
tens of thousands of bubbles, the bottleneck is our fluid simulation.

EXAMPLE (Falling Water Drops): We simulated three large
droplets falling from a faucet into a small tank of water (see Fig-
ure 12). As in all our examples, transfer is computed for an isolated

Example Computation Time (in hours)
Fluid φ Update Radiation Synthesis

Droplet 0.53 (32%) 1.08 (65%) 0.05 (3%) 0.004 (0.2%)
Splash 0.91 (26%) 2.38 (68%) 0.12 (6%) 0.009 (0.3%)
Pouring 2.57 (29%) 4.34 (49%) 1.86 (21%) 0.044 (0.5%)
Water Step 2.85 (21%) 6.38 (47%) 4.21 (31%) 0.054 (0.4%)

Table 2: Performance Timings: The parallelized fluid solver (Fluid) and
non-parallelized level-set update (φ Update) are always the bottleneck in
our implementation. Parallelized dual-domain radiation solves (Radiation)
are less expensive. Sound synthesis is relatively trivial, and (Synthesis) tim-
ings consist primarily of nonoptimized gigabyte file I/O. Overall, transient
few-bubble sounds (“Droplet” and “Splash”) are significantly less expen-
sive than continuous many-bubble sounds (“Pouring” and “Water Step”).

fluid source; here we ignore surrounding faucet and floor geometry.
Since only 14 bubbles were generated, computing costs are domi-
nated by fluid simulation (see Table 2). For convenience, we also
provide a “wet” sound using a simple reverberation filter. Record-
ings of individual bubble sounds were used to originally tune our
bubble entrainment model’s parameters. See Figure 7 for quali-
tatively similar spectrograms of a recorded droplet sound and our
digital mockup. A convergence analysis is provided in Figure 13
for the fluid-domain and air-domain solvers.

Drop Splash |vn|2 Sound pressure
Figure 12: Falling water droplet splashing and entraining bubbles. The
estimated surface normal velocity (|vn|2) is shown at the time of impact.
Resulting pressure waves are volume rendered for illustrative purposes only.

EXAMPLE (Pouring Water): This example (see Figure 2) is ge-
ometrically similar to “water drops,” but generated 7896 bubbles
(564× more) and required 363,457 transfer solves. Characteristic
bubble “chirps” can be heard here and in “water drops.”

EXAMPLE (Splashing Water): We simulated a small rigid sphere
splashing into a water tank (see Figure 14) using a technique similar
to [Carlson et al. 2004]. This example is an instance of the “Triple-
Domain Problem” (§5.7), and we place a quadrupole sound source
inside the rigid sphere in the air-domain radiation solver. The radia-



Figure 13: Dual-domain approx-
imation results for (Left) a single
bubble inside a fluid volume de-
formed after droplet impact: (Mid-
dle) fluid-domain and (Right) air-
domain convergence rates (with er-
ror bars for 95% confidence interval)
for randomly distributed quadrupole
sources, but fixed geometry and xb.
Both curves indicate quick decay to a
nominal accuracy suitable for plausi-
ble sound rendering.

tion computation was relatively cheap for this short transient sound.

Figure 14: Splash example

EXAMPLE (Babbling Water Step): Our most computationally in-
tensive example is water flowing over an horizontal surface with a
small downward step (see Figure 15). The example produces char-
acteristic babbling and chirping sounds.

Fixed sources: Unlike other examples where multipole sources are
advected, in this example we fix sources within the water domain to
avoid them entering/leaving the domain. Bubbles that reach the in-
terface (or otherwise exit) have their transfer function value frozen
at the last computed value.

COMPARISON (to unit transfer): To evaluate the significance
of including acoustic transfer effects, we also synthesized pouring
sounds with “unit transfer” (P = 1). The resulting sound is harsh
and unrealistic, which is perhaps not surprising given the complex
structure of transfer values (see Figure 4).

COMPARISON (constant vs. changing bubble frequency): We
synthesized pouring and “water step” sounds with and without bub-
ble frequency changes (§3.4) to demonstrate their subtle but per-
ceptually important effect. Transfer functions were unchanged.
The constant-frequency sounds tend to sound more like computer-
generated noise, whereas the nonconstant-frequency sounds have
richer variations and exhibit more chirping and babbling sounds.

COMPARISON (to real-world splashing): To compare against an
actual splashing sound with constant visual stimulus, we replaced
the sound track with recordings of real-world splash mock-ups. We
provide a single comparison, with mono-phonic sound. Although
the sounds are qualitatively similar, the real sound has more com-
plex tonal variations during the latter splashing phase.

COMPARISON (different radiation solver errors): A strength
of our radiation solver is that it can exploit the relatively low
boundary-condition accuracy (recall Figure 13) needed to produce
plausible fluid sounds in the listener’s far-field location. To eval-
uate the impact of larger radiation solver errors, the video com-
pares “water step” animations with different boundary-condition er-
rors in the fluid/air domain radiation solvers (18%/40%, 12%/35%,
8%/22%). Although the sounds are qualitatively similar, the low-
accuracy radiation coefficients tend to exhibit greater temporal vari-
ations (likely due to the ill-posedness of the least-squares approxi-
mation) resulting in greater noise in the synthesized sound. Some

listeners also perceived localization errors in low-frequency bub-
bles, possibly due to left/right-ear transfer errors in phase and/or
amplitude. We recommend using higher-accuracy approximations
when possible to minimize artifacts.

Figure 15: Water “babbles” as it flows over a small step

8 Limitations and Future Work
Fluid sound synthesis is a new area, and significant challenges re-
main. Our proposed model enables physically based sound render-
ing for harmonic fluid phenomena, however its physical simplifica-
tions and limitations provide many avenues for future work.

The mono-frequency acoustic bubble provides a good starting point
for modeling sound radiation, but is rather simplistic. It ne-
glects higher-order linear vibration modes, which is often justified
by the fact that higher-order linear modes radiate less well than
monopoles. However more complex nonlinear vibration modes
also exist, and can contribute to far-field radiation [Leighton 1994].
Both linear and nonlinear bubble vibrations can also lead to sig-
nificant inter-bubble coupling effects; dense bubble concentrations,
such as in foam or plumes, pose particular nonlinear challenges,
especially for radiation modeling [Deane 1997]. Very large bub-
bles can be important, and demand special attention given the com-
plexities of nonlinear vibrations and acoustic radiation. Bubbles
approaching the interface can lead to singularities in our boundary
integral solver, and a better model of nonspherical acoustic bubbles
at the interface is needed. Bubble popping and merging are missing
interfacial phenomena, as are boiling and fizzing.

Bubble forcing could be improved. We only considered an initial
entrainment-related pressure impulse, but later pressure forces can
be important, especially for larger bubbles [Leighton 1994], e.g.,
consider large bubbles rising from a scuba diver. Unfortunately
audio-rate pressure forcing can be expensive to evaluate accurately.

Our bubble entrainment model is stochastic, but actual entrainment
statistics are more complex [Leighton 1994]. Our model also lacks
dependence on pressure, which can be important for impact and
splashing, especially at high velocities [Franz 1959]. Future models
should reduce parameter tuning needed to achieve realistic bubble
distributions and spectra.

Our dual-domain multipole solver can be a good approximation for



compact sound sources (with modest kL values), however it is less
well-suited to larger sources, such as a swimming pool. Similarly,
we have not considered underwater listeners, which could avoid air-
domain solves but would be complicated by large fluid domains.
We have modeled harmonic fluid sound sources, but it still remains
to integrate these sound models into larger acoustic environments.
Including scattering effects of surrounding geometry, especially for
larger sound sources, remains a challenge. Low-error approxima-
tions may necessitate more sophisticated frequency-domain solvers
[Gumerov and Duraiswami 2005]. However, reviewers pointed out
that analytical solutions for simplified planar fluid-interface geom-
etry may suffice for some applications.

Splashing sounds produced by an impacting elastic object can also
include significant elastic object sound contributions [Franz 1959].
In general, fluid-solid-air coupling methods are needed to capture
the effects of vibrating solid objects, e.g., when pouring water into
a plastic cup or metal sink.

Opportunities exist for accelerating sound synthesis, and real-time
Harmonic Fluid sound sources appears feasible. The frequency-
domain radiation preprocess is pleasantly parallel, but numerous
bubble sound sources may become a bottleneck. Opportunities
clearly exist for perceptually based sound rendering by using de-
graded sound quality and exploiting perceptual masking, etc. Time-
domain solvers for the wave equation may also be a viable methods
for integrating the contributions of many bubbles. Finally, physi-
cally based sound rendering might be combined with data-driven
and stochastic methods to exploit complementary advantages for
more complex and noise-like phenomena, e.g., Niagara Falls.

A Acoustic Bubble Formulae
The bubble’s undamped natural frequency is [Leighton 1994]

ω0 =
p

3γp0 − 2σ/r0/ (r0
√
ρ) , (36)

and its damping rate is given by

β = ω0δ/
p
δ2 + 4 (37)

where δ=δ(ω0, r0)=δrad+δvis+δth is a dimensionless damping
value describing damping due to wave radiation (rad), fluid viscos-
ity (vis), and thermal conductivity (th):

δrad=
ω0r0

cf
, δvis=

4µf

ρω0r2
0

, δth=2

√
ψ − 3− 3γ−1

3(γ−1)

ψ − 4
, (38)

with ψ = 16
9(γ−1)2

Gthg
ω0

. The numerous parameters are as follows
(values given in Table 3): cf is the fluid’s speed of sound; p0 is the
hydrostatic pressure of the liquid (which we always approximate
as 1 atm in our simulations); γ is the gas’s heat capacity ratio (or
adiabatic index); µf is the liquid’s shear viscosity; σ is the fluid
surface tension coefficient; Gth = 3γp0

4πρDg
is the thermal damping

constant at resonance; and Dg is the gas’s thermal diffusivity.

Our ad hoc entrainment-related blending function is:

qblend(t) =

(
q(t)e−

(e−βt−0.85)2

0.0028125 , e−βt ≥ 0.85

q(t), e−βt < 0.85
(39)

B A Stochastic Model of Bubble Entrainment
Complex multi-scale interfacial mixing processes are responsible
for bubble formation, but we desire a simplified computational
model. We track mixing via the rapid movement of interfacial fluid
material into the fluid volume by monitoring rapid changes in φ val-
ues of fluid material from a value near zero, to a value revealing it is
now deep in the fluid. We place markers on a layer of particles near
the surface: fluid particle i gets a marker if φε<φi< 0, where φε
is a constant specifying the thickness of the marker layer (we use
φε =−2h). At each time step, we track each marker’s isosurface

Parameter Value Description
g 9.8 m/s2 gravitational acceleration
ρ 1000 kg/m3 water density
p0 101.325 kPa atmospheric pressure
γ 1.4 specific heat ratio of air
σ 0.0726 N/m surface tension coefficient of water
Dg 2.122e-5 m2/s thermal diffusivity of gas
cf 1497 m/s sound speed in water
ca 343 m/s sound speed in air
µf 8.9e-4 Pa · s shear viscosity of water
Gth 1.60 ×106 s/m thermal damping constant

Table 3: Physical constants used in our simulations

value. Dramatic decreases in marker φi values indicate the poten-
tial for bubble creation at the marker’s position. When a sufficient
φi decrease is detected, we call that marker a bubble seed—we use
these in our bubble creation process. Markers and bubble seeds are
illustrated in Figure 16.

Marker Particles

Bubble Seeds New Bubble

Figure 16: Bubble entrainment by a falling water drop (cut-away view)

Unfortunately, the reconstructed isosurface field can be noisy, so
that simply detecting rapid decreases in φi values is not robust.
Therefore, we use linear regression to estimate the slope, dφi

dt
,

by maintaining a sliding window (of width between 0.006sec and
0.01sec) for each marker’s φi values. The moment the slope ex-
ceeds a threshold (between −0.9m/s and −2.2m/s), the marker
becomes a bubble seed.

Bubble seed TTL and strength: Each bubble seed has (a) a cre-
ation time, t0, (b) a time-to-live (TTL) value, Tttl, after which the
seed dies, and (c) a “bubble creation strength” value, ws(t), which
is 1 initially and decays thereafter. Given a seed created at time t0,
we model the bubble seed’s strength by the cubic spline:

ws(t) =

(
1− 4τ3, 0 ≤ τ ≤ 0.5

4(1− τ)3, 0.5 < τ ≤ 1
where τ=

t− t0
Tttl

.

This distribution of strength-weighted bubble seeds provides clues
for creating bubbles at seed positions. We model the number of
bubble creation attempts (per time step) as proportional to the sum
total of seed strengths:

Nbub = κh2∆t
X

s is seed

ws(t), (40)

where κ is a parameter controlling the bubbliness of the flow; and
to try to make the bubble generation rate independent of spatial and
temporal discretizations we scale by the interface fluid-grid resolu-
tion, h2, and the time step size, ∆t.

Bubble radius and spectra: The radii of created bubbles strongly
affects the spectrum of the generated sound. In order to approxi-
mate the spectra of real fluid sounds, we use a probability distribu-
tion function to randomly sample bubble radii. In principle, by se-
lecting a proper bubble radius distribution, we can match the sound
spectrum to real sound cases—although not a sufficient condition
for realistic sounds. Similar to [Greenwood and House 2004], we
use a Gaussian distribution: mean and deviation were calibrated by
matching the characteristic pitch to typical recorded sounds.

Radius rejection sampling: For each bubble created at a time
step, we randomly select a seed as the bubble’s initial position. This



provides a density-based sampling, so that well-seeded regions are
more likely to create bubbles. Given a randomly sampled bubble
radius and position, to avoid placing unrealistically large bubbles in
small regions, our check to determine if enough local seeds s are
inside the bubble is:

r2
par

X
xs∈Bubble

ws(t) < τrej r
2
0 (41)

where rpar is the fluid particle radius (0.22h in our simulations),
and τrej controls bubble sizes (our examples use τref values be-
tween 0.9 and 2). Otherwise we create a bubble, and the seeds
inside a sphere of radius 1.5r0 are removed.

Algorithm: Our bubble creation method is summarized in Algo-
rithm 2. In reality, bubbles are generated at very high rates, so that
sounds from splashing or pouring appear continuous. To avoid dis-
cretization artifacts here, bubble creation times are uniformly dis-
tributed during the time step. The bubbles’ initial positions and
velocities are interpolated from bubble seeds.

Algorithm 2: CreateBubbles(B, M, S, t)
Data: The set of current bubbles B, seeds S, current markers

M, and current time t
begin1

update markers(M);2
sample isosurface value(M);3
create seeds(M, S);4
update seed strengths(S);5
Nbub ←num bubble creation attempts(S);6
for i = 1 . . . Nbub do7

seed←random select seed(S);8
r ←random select radius;9
if not reject bubble(seed, r, S) then10

create bubble(seed.pos, r);11
remove seeds(seed, r, S);12

end13

Parameter Tuning: Model parameters can be tuned manually for
best results. We first adjust the bubbly flow to get a plausible num-
ber of bubbles by tuning κ in (40) and τrej in (41), with unit values
being good initial guesses (see Table 4). In the second pass, we can
adjust the (Gaussian) distribution for the bubbles’ radius (and thus
frequency), e.g., to approximate spectra of recorded fluid sounds.

Drop Splash Pour WStep Description Eqn
κ 3.2 1.3 1.0 1.8 bubbliness (40)
τrej 2.0 0.9 1.4 1.5 radius limiter (41)

Table 4: User-specified entrainment parameters are roughly of unit size.

C Derivation of Source Strength, Sb
We estimate the delta-function source strength, Sb, of a point-like
bubble from its “divergence sourcing” strength (c.f. [Kim et al.
2007]). First, we take the divergence of the relationship between
harmonic acoustic pressure p(x) and acoustic velocity v(x),

∇p = −iωρv ⇒ ∇2p = −iωρ (∇ · v) . (42)

Given our divergence singularity of the form,∇2p=Sbδ(x− xb),
we can estimate Sb by integrating over a small domain Ωb contain-
ing the tiny bubble (so that

R
Ωb
δ(x− xb)dΩ=1):

Sb = −iωρ
Z

Ωb

(∇ · v) dΩ. (43)

The divergence theorem, and the rate of fluid expulsion from the
volume Ωb due to ε-amplitude pulsations, r=r0 + εe+iωt, yields

Z
Ωb

“
∇ · ve+iωt

”
dΩ = −d Vb

dt
= −4πiωr2εe+iωt. (44)

It follows that Sb is given by (10).
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