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Results

We evaluate our results by robustly rigidly aligning solutions to 
models produced by Bundler, in incremental SfM solver [5]. 

Dataset sizes are given in both meters and number of cameras. The 
table shows median and mean camera error.

•  13 large datasets—all new (except Notre Dame, from [5])
•  state of the art results
•  datasets and code available

The numbers below are errors in meters after a final bundle adjustment.

We significantly outperform an existing method [4]. 1DSfM often re-
sults in a similar median error, but a greatly improved average. Run-
times are 3-12x faster than [5].

We want to solve problems of this general form:

We compare poses in the measurement space of unit vectors with 
the squared chordal distance. 

Contribution 2: New Translations Solver

Properties:
 •  Nonlinear Least Squares problem (NLLS)—we use Ceres [3]
 •  Well-behaved error surface, especially after 1DSfM
 •  Can additionally use a Huber loss for even greater robustness
 •  Geometrically meaningful: MLE of the error model below

Convergence:
 •  NLLS is a local optimizer—global convergence not guaranteed
 •  Surprisingly, we find good solutions, even from random 
 initializations
 •  Plausibility: for a noise free problem, the error surface is 
    decreasing towards the global optimum. It deviates from this
    behavior slowly as noise increases:

Outliers won’t be detected in some projections. We project in 
many random directions and reject edges that are frequently 
inconsistent.

These 1D problems are instances of MINIMUM FEEDBACK ARC SET 
[2]. Solving them means choosing a best ordering. Outlier edges 
may not be consistent with the others.

1D subproblems are easier: we project the problem onto a single 
unit vector, so each edge becomes a simple plus/minus sign (due 
to the unknown scale of each edge) which we can represent as a 
directed graph.
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Left: an example translations problem
Right: the correct solution
An outlier edge is shown in red. Given the output embedding, 
we can tell it is an outlier. But how can we detect it upfront?
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Contribution 1: Outlier Removal with 
1DSfM
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Problem Statement
Incremental SfM is expensive and error-prone. We ex-
plore global methods to solve the problem in one shot.

Build a 3D model in one shot given many two-view 
models. We use Chatterjee and Govindu [1] to solve for 
rotations, and focus only on translations.

Goal:

}...

Challenges:

Contributions:
1DSfM: a simple way to detect outlier translation 
measurements using 1D subproblems

Solver: a new approach to solving translations prob-
lems using nonlinear optimization

We pose a translations problem as a standard nonlin-
ear optimization, which, coupled with outlier removal, 
yields good results even when initialized randomly.

Takeaway:

•  Many formulations of the translations problem are 
   non-convex. A solver must find a good solution 
   reliably.
•  Translations problems generally contain outliers. 
   These bad measurements can reduce solution quality 
   and make it harder for solvers to converge.
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