
Skipping Steps in Deformable Simulation with Online Model Reduction

Theodore Kim1,2 Doug L. James2

University of Saskatchewan1 Cornell University2

Figure 1: We learn fast subspace models on-the-fly to accelerate deformable simulation: (Top) Ground truth frames from a 1000-frame
deformable character simulation with 165,941 tetrahedra and Arruda-Boyce material which took 48 hours (174,521 seconds). (Middle)
Frames from our online integrator which were generated in only 51 minutes (3,101 seconds) – 56.28× faster – by learning a fast 11-
dimensional subspace model on-the-fly (Bottom) Visualization of the temporal behavior of the online integrator reveal full steps (in black),
reduced steps (in gray), and basis updates (red ticks). A reduced basis is detected quickly, and the first “skip” occurs at timestep 2. Only a
handful of full steps are needed, and our reduced solver computes over 98% of the the steps.

Abstract

Finite element simulations of nonlinear deformable models are
computationally costly, routinely taking hours or days to compute
the motion of detailed meshes. Dimensional model reduction can
make simulations orders of magnitude faster, but is unsuitable for
general deformable body simulations because it requires expensive
precomputations, and it can suppress motion that lies outside the
span of a pre-specified low-rank basis. We present an online model
reduction method that does not have these limitations. In lieu of
precomputation, we analyze the motion of the full model as the
simulation progresses, incrementally building a reduced-order non-
linear model, and detecting when our reduced model is capable of
performing the next timestep. For these subspace steps, full-model
computation is “skipped” and replaced with a very fast (on the order
of milliseconds) reduced order step. We present algorithms for both
dynamic and quasistatic simulations, and a “throttle” parameter that
allows a user to trade off between faster, approximate previews and
slower, more conservative results. For detailed meshes undergoing
low-rank motion, we have observed speedups of over an order of
magnitude with our method.

CR Categories: I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation, I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Physically based modeling

Keywords: Dimensional model reduction; reduced-order mod-
eling; subspace integration; subspace deformation; nonlinear solid
mechanics; character skinning

1 Introduction

Physically based deformable models in offline computer animation
have seen a dramatic increase in geometric complexity in recent
years due to the demand for increased realism, e.g., in character
animation. However, despite increases in computing power, ani-
mations of detailed meshes capable of capturing the features of a
character’s flesh can still take hours or days to simulate.

Model reduction (also known as subspace methods) can accelerate

the simulation of detailed deformable models by several orders of
magnitude, but their impact on offline physically based animation
has so far been limited for two main reasons. First, model reduc-
tion achieves superior runtime performance only after exploiting an
extensive precomputation stage. In the offline case, a simulation
is only computed once, so the cost of the precomputation nulli-
fies any speed gains obtained during the actual simulation. Second,
model reduction limits the motion of the model to a pre-specified
basis, and any attempted motion outside this basis is artificially sup-
pressed. Unfortunately, the minimum subspace necessary to faith-
fully capture the configurations space of an offline animation is not
generally known ahead of time. While intelligent guesses are pos-
sible, the likelihood of some interesting motion being suppressed
increases as an animation becomes more complex. Since the main
advantage of physically based techniques is their ability to automat-
ically capture novel dynamics, such suppression is unacceptable.

However, principal component analysis (PCA) of simulation results
often reveals that detailed meshes in fact undergo very low-rank
motion. This gives rise to the question: is it possible to some-
how discover this low-rank subspace “on the fly,” and exploit it
to make the simulation faster? In this paper, we design an online
subspace integrator that achieves this goal. We factor snapshots
of the full-model simulation state immediately after they are com-
puted and incrementally build a reduced nonlinear model. We then
use a variety of error estimators to predict if the next timestep can
be performed by our current reduced model, and if so, replace the
full-model computation with a very inexpensive (on the order of
milliseconds) reduced order step. We have used our method to suc-
cessfully discover the low-rank motion of a variety of simulations
and subsequently accelerate them by over an order of magnitude.
Note “skipping steps” can in principle accelerate simulations which
already have complex solvers, e.g., multigrid.

We allow the user to directly control the tradeoff between the speed
and quality of a simulation by providing a “throttle” parameter.
When the throttle is set high, the user can obtain fast, approximate
previews of the simulation motion without having to resort to lower
resolution meshes that may not faithfully represent high resolution
features. Once the user is satisfied with the previews, a more time-
consuming full simulation can be launched. If the throttle is set low,
the integrator will only use the reduced model when it is very confi-
dent that the amount of error being introduced is low. This will still
provide some speedup over the full simulation alone.

2 Related Work

Physically based simulation of deformable bodies has been an ac-
tive topic research in computer graphics for over two decades [Ter-
zopoulos et al. 1987; Terzopoulos and Witkin 1988; Terzopoulos
and Fleischer 1988], has experienced great success in simulating
such phenomena as cloth [Baraff and Witkin 1998; Bridson et al.
2002] and fracture [O’Brien and Hodgins 1999; Molino et al. 2004],
and has recently made great strides in robustness [Irving et al. 2004;
Teran et al. 2005]. While we briefly summarize related work here,
excellent existing surveys [Gibson and Mirtich 1997; Nealen et al.
2005] provide more complete treatments.

Our current work is orthogonal and complementary to hierarchi-
cal, multi-resolution methods [Debunne et al. 2001; Capell et al.
2002; Grinspun et al. 2002]. Hierarchical methods accelerate simu-
lations by detecting and exploiting spatially local coherence, while
our method exploits coherence in the global motion of a model. A
multi-resolution solver can play a crucial role in accelerating the
unreduced simulation and expediting the arrival of example data
to the subspace integrator. However, the running time of a multi-
resolution solver is inherently N -dependent, where N is the mesh

size. A subspace integrator constructs an O(r) subspace where
r � N . When a suitable subspace is found, the subsequent r-
dependent timesteps contribute significant additional speedup.

Most model reduction methods are a posteriori, because they first
construct a fixed basis by analyzing a static model (e.g. using lin-
ear model analysis (LMA) [Shabana 1990]) or a set of simulation
“snapshots” (e.g. using principal component analysis (PCA) [Krysl
et al. 2001]). Various extensions exist for LMA and PCA, such as
modal derivatives [Idelsohn and Cardona 1985] for the former, and
“interactive sketching” as a data collection strategy for the latter
[Barbič and James 2005]. Recent reduced-order methods for flu-
ids in graphics [Treuille et al. 2006; Wicke et al. 2009] are also a
posteriori, as they perform PCA on a set of fluids snapshots.

We are instead interested in a priori model reduction, which is not
restricted to any initial basis. A Priori Hyper-Reduction (APHR)
[Ryckelynck 2005] recently demonstrated the viability of such an
approach to finite element method (FEM) simulations of non-linear
thermal conduction. APHR has subsequently been extended to
boundary element method (BEM) simulations [Ryckelynck et al.
2005], as well as viscoelastic and viscoplastic FEM simulations
[Ryckelynck 2009]. APHR performs subspace simulation steps
while periodically checking the magnitude of the full residual. If
the residual is too large, the basis is enriched with Krylov vectors,
the simulation is backed up several timesteps, and then restarted.
Such backups are not acceptable in offline animation, since they
would require coupled simulators (fluids, rigid bodies) to be backed
up as well, which would invalidate any performance gains. The
dual weighted residual (DWR) method [Meyer and Matthies 2003]
as well as the method of Homescu et al. [2006] take a different
approach and solve the adjoint of a known simulation result back-
wards in time to obtain a priori reduced-order error bounds on per-
turbed versions of the simulation. These two methods still bootstrap
off of existing simulation data, so they cannot be applied to the case
where the simulation is only computed once. Utku et al. [1985] pro-
posed an a priori method of estimating the reduced-order error of
a non-linear system over time with the goal of evaluating the effec-
tiveness of different bases. While the details differ significantly, our
error estimator for dynamic simulation shares the same high-level
strategy of linearizing about the last known unreduced state.

Our online subspace integrator is motivated by the fact that many
animations are often much lower rank than their underlying mod-
els. For example, pose-space deformation [Lewis et al. 2000]
successfully constructs low-dimensional approximations to posed
high-rank meshes by using scattered data interpolation. Wang and
Phillips [2002] estimated “multi-weight enveloping” approxima-
tions to offline deformable simulations to accelerate complex char-
acter models. Similarly, Key Point Subspace Acceleration (KPSA)
[Meyer and Anderson 2007] constructs a low-rank approximation
to a set of training poses, and provides a set of “key points” for an
animator to pose. A similar notion was used to select a set of “key
tets” as cubature points to approximate the force and stiffness re-
sponse of a deforming model [An et al. 2008], and the number of
key tets necessary was found to grow linearly with the rank of the
subspace. The EigenSkin algorithm [Kry et al. 2002] constructed
a sparse basis from offline FEM snapshots to correct the results of
a skinned model, and found that even a small (rank 1) basis re-
sulted in a significant reduction in skinning error. James and Twigg
[2005] demonstrated that clustering and least-squares approxima-
tion could be used to detect bones and bone weights, and automati-
cally construct low-rank skinning approximations to existing mesh
animations. The possibility of efficient inter-object collision han-
dling between reduced deformable models has also been demon-
strated [James and Pai 2004; Barbič and James 2007]. Unfortu-
nately, none of these methods can adapt their fast reduced-order
models on-the-fly to accelerate general-purpose deformable simu-

lations.

3 Subspace Deformation Basics

3.1 Equations of Motion

We write the equations of motion for a general deformable body as:

Mü + Cu̇ + f(u) = −fext, (1)

where u is a displacement vector, M is a mass matrix, C is a damp-
ing matrix, fext are external forces, and f(u) is an internal force
response. We will use uppercase to denote a matrix, lowercase
to denote a vector, and overdots to denote differentiation with re-
spect to time. For a deformable model with N degrees of freedom,
u ∈ RN , fext ∈ RN , M ∈ RN×N , C ∈ RN×N , and f(u) ∈ RN .
We use standard Rayleigh damping, where C = αM + βK0.
K0 ∈ RN×N and denotes the stiffness matrix at the rest pose.
We integrate this system forward through time using a Newton-
Raphson solver, with a preconditioned conjugate gradient (PCG)
solver invoked at every iteration to solve the N ×N system.

3.2 Quasistatic Deformation

For applications such as character animation, quasistatic simulation
can be preferred over dynamics simulation because it provides less
history-dependent behavior. While Eqn. 1 describes dynamic simu-
lation, quasistatics assume that velocity and acceleration (u̇ and ü)
are negligible and that the model has reached an equilibrium state.
Therefore, Eqn. 1 becomes a simpler equation: f(u) = −fext.
The displacements u is solved for again using Newton-Raphson
and PCG. Specifically, the force balance equation

K(u)∆u = −fext − f(u) (2)

is formed, where K(u) is the stiffness matrix at the displacement
u. Newton-Raphson solves for u by using PCG to repeatedly com-
pute the correction term ∆u. The force residual fr is the current
difference between the sides of Eqn. 2,

fr = K(u)∆u + fext + f(u), (3)

and characterizes how far from a fully balanced solution the current
u is. If the norm of a force residual is large, it indicates that the
current u is far from the equilibrium solution. We will use this fact
later when designing our quasistatic error estimator.

3.3 Reduced Equations of Motion

Subspace deformation techniques reduce the runtime cost of inte-
grating the equations of motion by approximating the large N ×N
system with a much smaller r × r system. This is accomplished
by systematically applying a basis matrix U ∈ RN×r to Eqn. 1.
Assuming the columns of U are orthogonal, the mass matrix and
damping matrices are projected down to their reduced equivalentsfM = UT MU and eC = UT CU. Vector quantities such as fext,
as well as the displacement u and its derivatives, are also approxi-
mated by the reduced displacements, e.g. q = UT u. The reduced
equations of motion are then

fMq̈ + eCq̇ + ef(q) = −efext. (4)

Newton-Raphson and PCG are instead performed on this smaller
system. However, while the values of fM and eC can be precom-
puted, the internal force ef(q) varies depending on the current model
configuration, and cannot be precomputed.

One option is to instead compute f(u) and subsequently ef(u) =
UT f(Uq) at every iteration [Krysl et al. 2001]. However, com-
puting f(u) introduces an N -dependent cost, and compromises the
goal of constructing an r-dependent algorithm that integrates en-
tirely inside the subspace. In order to avoid this dependence, we ap-
proximate both ef(q) and its Jacobian eK(q) with a cubature scheme
[An et al. 2008]. Briefly, given the strain energy Ψ(X;q) of a mate-
rial in reduced coordinates q, the reduced force ef(q) over the mesh
domain Ω is the integral:

ef(q) = −
Z

Ω

∇qΨ(X;q) dΩX . (5)

The gradient ∇qΨ(q) denotes the reduced first Piola-Kirchoff
stress. The cubature scheme approximates this integral with a dis-
crete set of n carefully chosen “key tets”:

ef(q) = −
Z

Ω

∇qΨ(X;q) dΩX ≈ −
nX

i=1

wi∇qΨ(Xi;q). (6)

The Xi term denotes the key-tet material position, and wi the cu-
bature weight of some tet i. The scheme essentially computes a
weighted sum of first-Piola Kirchoff stresses over a set of key tets,
and the negated sum is projected into the subspace U. The reduced
stiffness matrix eK(q) is evaluated analogously. If O(r) key tets are
used, then the overall algorithm remains r-dependent. The algorith-
mic detail to note is that the key tets and weights are dependent on
U, so if we incrementally construct U in an online manner, we
must incrementally update the cubature scheme as well.

4 Online Model Reduction

In this section, we will often refer to the “full solver” or a
“full step”, and the “reduced solver” or a “reduced step”. In
all of these cases, “full” refers to the unreduced, full-rank solver
with N -dependent cost, and “reduced” refers to the incrementally
built, low-rank reduced-order solver with some r-dependent (N -
independent) cost.

4.1 Basis Updating and Downdating

The sources of error in dynamic and quasistatic simulations differ
significantly, so we have found it necessary to design separate on-
line algorithms for each. However, both algorithms construct their
reduced models in the same way, so we will begin by describing
this shared component.

Updating U: We initialize the basis matrix to be empty, U ∈
RN×0, and build it incrementally by updating a QR factorization
on simulation results as soon as they are produced by the full
solver. When a vector u arrives, it is orthogonalized against the
existing columns in U using modified Gramm-Schmidt [Golub and
Van Loan 1996]. If its relative RMS-norm after orthogonalization
is larger than some threshold τdiscard, then it is concatenated to
U. We compute the RMS norm as ‖u‖RMS = ‖u‖2

|u| , where |u|
is the cardinality of u. This process is summarized in lines 4-8 of
Algorithm 1.

Downdating U: Model reduction is most effective when the sub-
space rank satisfies r�N , so the number of columns in U should
be limited to some maximum rank rmax. A simulation will almost
certainly take more than rmax timesteps, so a downdating strategy
is needed for when U already contains rmax columns and the full
simulation provides a significant new u vector. Ideally, we would
only discard the portions of the basis that will never be encountered
again, so we base our downdating strategy on the assumption that

Algorithm 1: modifyBasis(u, U)
Data: Candidate snapshot vector, u; Current basis U
begin1

if r ≥ rmax then2
downdateBasis()3

u⊥ ← make u perpendicular to U4

if ‖u⊥‖RMS
‖u‖RMS

> τdiscard then5
u⊥ = u⊥/‖u⊥‖26
U← [U u⊥]7
r++8
Record new [r(u),u] cubature training pair9
Retrain cubature10
Delete all key tets i where wi = 011

return ‖u⊥‖RMS12
end13

the most recently seen states are the best predictor for future states.
If we are downdating at timestep t, we concatenate the most recent
reduced coordinates into a matrix A =

ˆ
qt−1qt−2...qt−rmax/2

˜
and compute its SVD, A = RΣVT . We then use R to apply a ro-
tation to the basis U so that the most important directions from the
last rmax

2
reduced states are preserved. The new downdated basis

is Unew = UR. Computing the SVD of A is O(r3), but since
we are typically dealing with r ≈ 30, this cost is negligible. This
process is summarized in lines 2-6 of Algorithm 2.

Algorithm 2: downdateBasis()
Data: Current basis U; A = [qt−1 qt−2 . . . qt−rmax/2]
begin1

Uold ← U2
r = brmax/2c3

RΣVT ← compute SVD of A4
U← UoldR5
discard cubature training data, and A cache6

end7

Updating Cubature: The cubature scheme is basis dependent, so
when U is updated or downdated, the key tets and weights in Eqn.
6 must be modified as well. In order to compute the weights wi, the
cubature optimizer [An et al. 2008] requires example force data,
which we obtain by recording the corresponding force snapshot
f(u) whenever a snapshot u is added to U. Upon updating, the
new U, all the recorded force snapshots, and the previous set of
key tets are sent to the cubature optimizer. When the optimization
completes, we discard all the key tets with weights set to zero. Since
the optimizer is randomized and greedy, this provides a way of dis-
carding inferior key tets if new ones are found that provide a better
fit. When a downdate occurs, there is no longer any guarantee that
U will be able to reproduce the deformations corresponding to the
force snapshots, so we delete all the force snapshots.

4.2 Error Estimation

The dynamic and quasistatic online integrators both use Algorithm
1 to construct their reduced order models. However, a method is
still needed to determine if the reduced model can be used to take
the next timestep in place of the full integrator, or if doing so will
introduce an unacceptable amount of error. Such an error estima-
tor must obviously avoid taking a full integrator timestep, but it
must also be inexpensive, ideally r-dependent, because otherwise

the cost of computing the estimate could invalidate the performance
gains of the reduced model. The sources of error are sufficiently
different between the dynamic and quasistatic cases that we have
designed separate estimators for each.

4.2.1 Quasistatic Error Estimation

The main source of error in the quasistatic case is the inability of
the basis to resolve the mesh pose at the equilibrium solution. As
noted in Section 3.2, any deviation from equilibrium will produce
a non-zero force residual, and large deviations will produce large
residuals. Therefore, if we step the reduced integrator, compute
u ← Uq, fr, and ‖fr‖, and find that the norm is large, we know
that the error is large and the full solver should be used. However,
computing fr is an operation with N -dependent cost, and the defi-
nition of a “small” ‖fr‖ is material dependent. These two problems
are addressed below.

While computing the full norm ‖fr‖ takes N -dependent work, the
norm can be efficiently approximated via sampling. For any mesh
vertex, we can obtain its one-ring tetrahedra and use them to com-
pute the vertex entries for fr in O(1) time. If we do this for O(r)
random mesh points, we can obtain a highly satisfactory approxi-
mation to ‖fr‖ in O(r2) time. This process is summarized in Algo-
rithm 3.

Algorithm 3: estimateForceResidual()

begin1
S← select sample points2
for i ∈ S do3

Identify vertex i and one-ring tetrahedra4
Ui ← retrieve basis rows for vertex i5
festi ← K(Uiq)iUiq + fexti + r(Uiq)6

return ‖fest‖7
end8

The definition of a “small” residual norm depends on the material
model. For example, given the same displacement error, a stiff ma-
terial would produce a much larger residual than a soft material.
The correspondence can be resolved by solving Eqn. 2, but this is
precisely the computation we are trying to avoid. Instead, we can
learn an upper bound on what constitutes a “small” residual norm
for a specific material as the simulation progresses. When a full
step is taken, we also take a reduced step and compute the true er-
ror, err. If the ‖err‖RMS < τerror , and its corresponding residual
‖fr‖RMS is larger than any norm less than τerror seen so far, then
‖fr‖RMS is stored as the upper bound τupper . The next timestep,
the reduced model is stepped, and an estimate to ‖fr‖RMS , fest,
is computed. If the estimate is larger than τupper , the error is pre-
dicted to be greater than τerror , and a full step is taken. Otherwise,
the reduced result is used to skip the full step. The complete qua-
sistatic online integrator can now be summarized in Algorithm 4.
The throttle parameter, Tquasi will be defined in section 4.3.

4.2.2 Dynamic Error Estimation

In the quasistatic case, error occurred when the basis could not re-
solve the equilibrium pose of the mesh. The simulation could re-
cover from such error in a single step, because if a full step was sub-
sequently taken, the correct pose could still be retrieved. In dynam-
ics however, the error is history dependent. If a run of consecutive
reduced steps were taken that erroneously dissipated away impor-
tant velocities and accelerations, taking a full step at the end of the
run would not recover these quantities. Unless we rewound the sim-
ulation, the information would be irrecoverable, and the simulation

Algorithm 4: stepOnlineQuasistatic()

begin1
fest ← 2× τupper2
if r > 0 then3

q← take subspace timestep4
fest ← estimateForceResidual()5

if fest > Tquasi · τupper then6
uold ← u7
u← take full timestep8
modifyBasis(u, U)9

q← UT uold10
q← take subspace timestep11
err← u−Uq12
if ‖err‖RMS < τerror then13

fr ← K(Uq)Uq + fext + r(Uq)14
if ‖fr‖RMS > τupper then15

τupper = ‖fr‖RMS16

else17
u← Uq18

A← [Aq]19
end20

motion would be corrupted. We found that the force residual-based
estimator from the previous section detects error only after it has
become irrecoverable, and a more conservative approach is needed
for dynamics. We used two complementary error estimators.

Estimating how many steps to skip: The first error estimator pre-
dicts how many consecutive reduced timesteps can be taken based
on the orthogonal component of the last full step. This component,
‖u⊥‖RMS is already computed during Algorithm 1, and is returned
at the end of that process. The maximum number of consecutive re-
duced steps that can be taken is estimated to be

smax =

—
τdiscard

‖u⊥‖RMS

�
. (7)

We essentially assume that the previous error ‖u⊥‖RMS will com-
pound linearly with each step, and estimate how many steps would
elapse before the error became so large that it would be added as a
new column to U. This estimate is conservative – subspace error
is usually characterized as a sum of projection error and integration
error (for example, see Homescu et al. [2006]), with integration
error being the only component that compounds over time. We pes-
simistically assume that all of the error is integration error.

Estimating subspace error: The second error estimator predicts
what the next column will be that gets added to U, and concate-
nates it temporarily as an “error column,” uerr , to the end of U. If
its corresponding entry in q, qerr , begins to grow, then we know
that the other columns in U are insufficient to capture the current
motion, and a full step should be taken. Notably, uerr and qerr

capture the information that otherwise would have been irrecover-
able, so when the full step is taken, the motion of the model will
have been minimally corrupted.

The selection of the error column uerr is critical. We chose to
compute uerr using the Hessian H(u) about the current u. H(u)
is the Jacobian of the stiffness matrix K(u) and thus characterizes
how K(u) will change as the mesh moves in some direction away
from the current u. We assume that the mesh will continue to move
along its current trajectory, u̇, and thus choose to contract H(u)
twice with u̇. The resulting vector ∆f(u) characterizes new forces

that the mesh will experience as it moves along u̇. The new dis-
placement ∆u induced by ∆f(u) is then solved for and used as
verr . This process is summarized in Algorithm 5.

We have found that by using this combination of error estimators,
it is possible to perform dynamic online model reduction simula-
tions without significantly corrupting the motion of the model. The
complete algorithm is described in Algorithm 6.

4.3 Throttle Parameters

In both the quasistatic and dynamic case, we provide throttle pa-
rameters, Tquasi and Tdyn, which are respectively on lines 6 and
9 of Algorithms 4 and 6. The intuition behind both are the same:
larger values tell the online integrator to be more optimistic and take
more reduced steps than it otherwise would, whereas smaller val-
ues force the integrator to be more conservative. The default value
for both are 1, and a setting of 0 effectively deactivates the reduced
solver. Further settings will be discussed along with the results.

Algorithm 5: computeErrorVector(u)
Data: Current state u
begin1

∆f(u)← (H(u) : u̇)u̇2
A← system matrix from last full step3
Solve A∆u = ∆f(u)4
return ∆u5

end6

Algorithm 6: stepOnlineDynamic()
Data: full stores whether to take a full or reduced step, initialized

to true; smax, the maximum consecutive reduced steps that
can be taken, initialized to 0; scurrent, number of
consecutive reduced steps taken so far, initialized to 0.

begin1
if full then2

[u u̇ ü]← take full timestep3
if r > 0 then4

[q q̇ q̈]← take subspace timestep5
err← u̇−Uq̇6

‖u⊥‖RMS = modifyBasis(u, U)7
if ‖err‖RMS/‖u̇‖RMS < τerror then8

smax = Tdyn · bτdiscard/‖u⊥‖RMSc9
if smax > 0 then10

uerr ← computeErrorVector(u)11
modifyBasis(uerr , U)12
scurrent ← 013
full← false14

[q q̇ q̈]← UT [u u̇ ü]15

else16
[q q̇ q̈]← take subspace timestep17
[u u̇ ü]← U[q q̇ q̈] // Sometimes optional18
scurrent + +19

if (q2
err/N)

1
2 > τerror||scurrent == smax then20

delete verr from U21
full← true22

A← [Aq]23
end24

5 Results

Figure 2: Simulation meshes used in our examples. Left: Head
mesh used for Fig. 1, containing 165,941 tetrahedra (inside is
hollow). An embedded high resolution surface mesh containing
1,420,970 vertices and 2,835,314 triangles was used for the final
renders. Right: Pendulum mesh used for Fig. 4 containing 64,275
tetrahedra. No high resolution mesh was used for the final renders.

We describe numerical experiments with the online integrator for
simulations of two dynamic models and one quasistatic model. In
all cases, the online integrator automatically constructed a low-rank
reduced-order model and successfully skipped a large number of
steps. All of the following timings were obtained on an 8-core
3.0 Ghz Intel Xeon with 8 GB of RAM. The full solver used the
PCG solver in PetSc [Balay et al. 2001], with Intel’s Math Kernel
Library (MKL) handling the LAPACK and BLAS routines. The
reduced solver used the Intel MKL for BLAS calls and Cholesky
solves. OpenMP was used to accelerate stiffness matrix construc-
tion in both solvers and key-tet selection in the cubature optimizer.
The underlying tetrahedral models used in our simulations can be
seen in Fig. 2. For the head example (Fig. 1), an embedded high
resolution mesh was used for the final renders. The mesh for the
beam example (Fig. 3) is not shown because it is just a regular line
of tetrahedra. All of the meshes were generating using IsoSurface
Stuffing [Labelle and Shewchuk 2007].

The first dynamic model is a thin, cantilever beam composed of
16,824 tets, St. Venant-Kirchhoff (StVK) material with λ=20000
and µ = 100000, and a gravity force applied (Figure 3). While
many graphics papers use a thick beam to demonstrate the effi-
cacy of a deformation method (see e.g. [Barbič and James 2005]),
the beam usually does not exhibit significant dynamics, and would
have been a trivial case for our online integrator. We instead chose
a more challenging case where the beam bounces and swings for
most of the simulation. Even with these more complex dynam-
ics, the online integrator discovered a rank 13 subspace contain-
ing 112 key tets and skipped 802 to 1500 (53.47%) timesteps for
Tdyn = 1 and 1459 of 1500 (97.27%) timesteps for Tdyn = 2.
Inside the online integrator, the full integrator averaged 18.5 sec-
onds per timestep, while the reduced integrator averaged 88 mil-
liseconds for Tdyn = 1, and respectively 21.31 seconds and 46 ms
for Tdyn = 2. A full simulation completed in 30,658 seconds, and
the online integrator completed in 12,987 (Tdyn = 1) and 941.01
(Tdyn =2) seconds, giving speedups of 2.36× and 32.58×.

Tdyn =1

Tdyn =2

Figure 3: Frames from a 1500 step cantilever beam simulation.
The online integrator is up to 32.58× faster than the full simula-
tion. Along the bottom is a visualization of the integrator steps, with
the same coloring as Fig. 1. The discovered bases are identical, but
the default setting of Tdyn = 1 conservatively skips only 53.5% of
the steps. The user can specify a more aggressive Tdyn =2, result-
ing in 97.27% of the steps being skipped.

The second dynamic model is a pendulum made up of four fused
armadillos, containing 64,275 tets and made of the same material
as the previous example (Figure 4). In addition to gravity, a sec-
ond body force is applied at timesteps 70-80 to induce a swinging
motion. The online integrator automatically discovered a rank 15
subspace containing 67 key tets, and skipped 901 of 1500 (60.07%)
timesteps. The basis has 44 snapshots added, but was downdated
twice. The full integrator averaged 20.35 seconds per timestep, and
the reduced integrator averaged 583 ms. A full simulation com-
pleted in 26,708 seconds, and the online integrator completed in
12,715 seconds, giving a 2.1× speedup.

The quasistatic example is a head model composed of 165,941 tets,
and is composed of an Arruda-Boyce material (see e.g. [An et al.
2008]) with settings µ = 5000, N = 5000, and k = 100000 (Fig-
ure 1). Skeletal subspace deformation (SSD) [Magnenat-Thalmann
et al. 1988] has been used to introduce a neck joint, which then
drives an EigenSkin [Kry et al. 2002] FEM simulation, i.e., the Uq
displacement is defined in the “dress pose” of the character and is
mapped through the SSD transform. For Tquasi = 1, the online
integrator automatically discovered a rank 12 subspace containing
143 key tets, and skipped 927 of 1000 (92.70%) timesteps. The full
integrator averaged 210.00 seconds per timestep, while the reduced
integrator averaged 905 ms. For Tquasi = 1.5 a rank 11 subspace
containing 121 key tets, was discovered, and 987 of 1000 (98.70%)
timesteps skipped. The full integrator averaged 213.46 seconds per
timestep, while the reduced integrator averaged 238 ms. The full
simulation completed in 174,521 seconds, and the online integrator
completed in 16,174 seconds for Tquasi =1 and 3,101 seconds for
Tquasi =1.5, giving speedups of 10.79× and 56.28×.

We additionally computed a more complex head motion that can be
seen in the video. A bee lands on the character’s ear and he tries
various motions to shake it off. The online integrator discovered a
rank 20 subspace containing 200 key tets, and skipped 528 of 600
(88.00%) timesteps. Inside the online integrator, the full integrator
averaged 196.60 seconds per timestep, while the reduce integrator

Tdyn =1

Figure 4: Frames from a 1500 step pendulum simulation. The on-
line integrator is 2.1× faster than the full simulation. Along the
bottom is a visualization of the integrator steps, with the same col-
oring as Fig. 1. The default setting of Tdyn =1 skips only 60.07%
of the steps. Increasing Tdyn would have not effect, as the skipped
steps extend through the end of the simulation.

averaged 1.42 seconds. A full simulation completed in 124,544
seconds, while our online integrator completed in 14,906 seconds,
giving a 8.35× speedup.

The beam simulation used the parameter setting τerror = 10−2,
while the pendulum and quasistatic examples used the setting
τerror = 5e−3. The dynamics simulations used τdiscard = 10−2,
while the quasistatic simulation used a smaller τdiscard = 10−3 to
avoid excessive popping. All three examples used rmax = 20, and
both dynamics examples used a timestep size of δt=10−2. All the
meshes were initially normalized to a unit cube, so displacement
error is always in terms of unit length.

A slight pop is visible at the beginning of the quasistatic exam-
ple because the online integrator skips a step before obtaining a
more robust value for τupper . Larger values for Tquasi accelerate
the simulation further, but the lower accuracy results in more pop-
ping. The overall global motion is still preserved, so the online
integrator still serves as an effective previewing tool in this case. If
speed and motion smoothness is more important than accuracy, one
could also blend between the reduced and full solutions similar to
KPSA [Meyer and Anderson 2007] to minimize the visual impact
of the popping.

6 Discussion

Newton Convergence: All of our Newton solves were run until
4 digits of accuracy were obtained. When estimating error, it is
imperative that the full solution have a known accuracy. Otherwise,
it is impossible to determine if the disparity between the full and
reduced solutions should be attributed to subspace error or residual
error in the full solution. While we did experience problems with
Newton non-convergence, these were mostly fixed by modifying
the linearization point for F̂ during element inversion [Irving et al.
2004]. With appropriate inversion values, the number of Newton
iterations rarely exceeded 20.

Error compared to full rank: The RMS error of the dynamic
and quasistatic simulations compared to a full-rank simulations are

Figure 5: RMS error of online simulations compared to “full rank”
simulation. Error introduced into the dynamic simulation persists
into later timesteps, while the quasistatic simulation is not history-
dependent, so error can appear abruptly and then vanish.

shown in Fig. 5. As described in section 4.2.2, when the dynamic
online integrator introduces error into the simulation, the error per-
sists into all later timesteps. While the error appears to decrease
steadily in the beam simulation, this is because the beam is coming
to rest, not because the error has necessarily been corrected. The
quasistatic case shows more discontinuous behavior, because the
error only depends on how far outside the basis the true equilibrium
pose is, and does not accumulate smoothly over time.

Subspace behavior under refinement: The main attraction of the
online integrator is that it can decouple the complexity of the mo-
tion from the complexity of the mesh. In order to explore the invari-
ance of this property, we performed the simulations from Figs. 1
and Figs. 3 under different spatial and temporal resolutions (Tables
2 and 1). Higher spatial resolution was achieved by increasing the
resolution of the BCC grid in an Isosurface Stuffing [Labelle and
Shewchuk 2007] implementation. While the percentage of skipped
steps remains highly stable for the quasistatic simulation, we found
the behavior to be moderately stable to highly erratic for the dy-
namic simulation. Under spatial refinement, the highest resolution
mesh waited the longest before skipping its first step, but was also
able to pick up an additional snapshot that enabled it to skip more
steps overall. Results were far more erratic under temporal refine-
ment, where the number of skipped steps oscillated between many
and none. Small tweaks restored some of the lost skipped steps. For

BCC
Res.

tets # ver-
tices

δt τerror final
rank

% skipped

323 640 291 0.01 0.01 12 23.5%
643 1104 491 0.01 0.01 12 22.8%
1283 4949 16824 0.01 0.01 13 53.5%
323 640 291 5e−3 5e−3 15 0%
323 640 291 2.5e−3 2.5e−3 18 76.8%
323 640 291 1.25e−3 1.25e−3 12∗ 0%

Table 1: The dynamic beam simulation (Fig. 3) under spatial and
temporal refinement. Tdyn = 1 in all cases. Note that the rank
denoted (*) was downdated once; the total number of snapshots
added was 22.

BCC
Res.

tets # ver-
tices

δt τerror basis
adds

final
rank

%
skipped

323 20256 4472 0.01 1e−4 44 9 87.7%
643 165941 38373 0.01 1e−4 30 20 87.9%
323 20256 4472 5e−3 1e−4 34 9 81.7%
323 20256 4472 2.5e−3 1e−4 37 7 84.8%
323 20256 4472 1.25e−3 1e−4 44 9 85.9%

Table 2: The quasistatic head simulation (Fig. 1) under spatial and
temporal refinement. Tquasi = 1 in all cases. Unlike the dynamic
simulations, the percentage of skips is stable under refinement.

δt = 5e−3, when τerror was increased from 5e−3 to 7e−3, 17.19%
of the steps were skipped instead of 0%. The need for this tweak-
ing is unfortunate, and we speculate that it occurs because smaller
timesteps allow new transient waves to enter the motion, altering
the subspace necessary to achieve a given τerror . This seems to
be supported by the increased number of added snapshots as the
timestep is refined, but the problem needs further study.

Failure Cases: We found the three most important parameters in
the simulation to be τerror , τdiscard and rmax. An incorrect set-
ting for any of these parameters would either corrupt the motion
or increase the overall running time of the simulation. If τerror

was set too large, the integrator would take subspace steps using
a poor basis. In the quasistatic case this caused extreme pops like
those described at the end of Sec. 5. In the dynamics case, this
dissipated away almost all of the motion, and in the worst cases
returned solutions there were so poor that they caused the Newton
solves in later steps to diverge. If τerror was set too small, no steps
were ever skipped. If τdiscard was set too large, no snapshots were
added to the basis and no steps were skipped. If τdiscard was set
too small, the basis became polluted with unimportant snapshots,
and the subspace spanned by the basis never grew large enough to
skip a significant number of steps. Similar behavior was observed
if rmax was set too small. If rmax was too large (> 20), we found
that the training time for the cubature scheme (line 10 of Algorithm
1) became prohibitive, and in the worst case even took longer than
a full-rank simulation step. In all of our examples, the values for
these parameters were arrived it via experimentation, and modify-
ing them by an order of magnitude in either direction produced a
failure case. An automatic method of determining optimal values
for these parameters for an arbitrary motion remains future work.

7 Future Work

Using on-the-fly model reduction opens up a new direction for
accelerating deformable simulations by skipping steps. As with
most new approaches, there are limitations and directions for fu-
ture work.

A promising area for future development is free-flight dynam-
ics and contact handling. We demonstrated results for models
with fixed vertices, however similar to exploiting simplified small-
deformation or modal models in moving frames for dynamics [Ter-
zopoulos and Witkin 1988] or collisions [James and Pai 2004], on-
line model reduction should be able to exploit the redundancy of
motion in moving frames, and transition from rigid to reduced-
deformable to general models seamlessly [Ogot et al. 1996]. Colli-
sions and contact pose special challenges depending on the result-
ing motion complexity, and contact resolution methods employed.
However, there is evidence that reduced-order models might be ex-
ploited in frictional contact resolution [Kaufman et al. 2008].

Building reduced-order models on-the-fly can help skip steps for
low-rank and redundant motion, however it is not a panacea for
deformable simulation: complex motions with higher rates of sub-
space expansion are less likely to be accelerated by such methods.
For example, the speedup observed in the pendulum example is
smaller than the two other examples because the motion is inher-
ently of higher rank. In general, exploiting sparse U basis matrices
for large models is appealing. In some cases, it may be possible
to cluster the mesh into several lower rank submeshes at runtime
and integrate them in parallel, and extending reduced-order domain
decomposition methods [Huang et al. 2006] to the online model
reduction setting is a direction for future work.

Finally, it remains to be seen if a similar online algorithm can be
designed for reduced-order fluid dynamics [Treuille et al. 2006;
Wicke et al. 2009]. Different error estimators had to be designed
for the dynamic and quasistatic cases here, so it is likely that a dif-
ferent estimator will be needed for the case of fluids.

Acknowledgements The authors would like to extend a special
thanks to Scott Wells (http://www.scottwells3d.com) for
generously providing access to his “Les Avocats” model in Fig-
ure 1. We would like to thank the anonymous reviewers for helpful
feedback. This work was supported in part by the National Sci-
ence Foundation (CAREER-0430528, EMT-CompBio-0621999),
the National Institutes of Health (NIBIB/NIH R01EB006615), the
Alfred P. Sloan Foundation, and generous donations by Pixar, Intel,
and Autodesk. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foun-
dation.

References

AN, S. S., KIM, T., AND JAMES, D. L. 2008. Optimizing Cu-
bature for Efficient Integration of Subspace Deformations. ACM
Trans. on Graphics 27, 5 (Dec.), 165.

BALAY, S., BUSCHELMAN, K., GROPP, W. D., KAUSHIK,
D., KNEPLEY, M. G., MCINNES, L. C., SMITH,
B. F., AND ZHANG, H., 2001. PETSc Web page.
http://www.mcs.anl.gov/petsc.

BARAFF, D., AND WITKIN, A. P. 1998. Large steps in cloth simu-
lation. In Proceedings of SIGGRAPH 1998, Computer Graphics
Proceedings, Annual Conference Series, 43–54.

BARBIČ, J., AND JAMES, D. L. 2005. Real-Time Subspace In-
tegration for St. Venant-Kirchhoff Deformable Models. ACM
Trans. on Graphics 24, 3 (Aug.), 982–990.

BARBIČ, J., AND JAMES, D. L. 2007. Time-critical distributed
contact for 6-dof haptic rendering of adaptively sampled reduced
deformable models. In ACM SIGGRAPH Symposium on Com-
puter Animation, San Diego, CA.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust
treatment of collisions, contact and friction for cloth animation.
ACM Transactions on Graphics, 594–603.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND
POPOVIĆ, Z. 2002. A Multiresolution Framework for Dynamic
Deformations. In ACM SIGGRAPH Symposium on Computer
Animation, 41–48.

DEBUNNE, G., DESBRUN, M., CANI, M.-P., AND BARR, A. H.
2001. Dynamic Real-Time Deformations Using Space & Time
Adaptive Sampling. In Proc. of ACM SIGGRAPH 2001, 31–36.

GIBSON, S. F., AND MIRTICH, B. 1997. A Survey of Deformable
Models in Computer Graphics. Tech. Rep. TR-97-19, Mitsubishi
Electric Research Laboratories, Cambridge, MA, November.

GOLUB, G., AND VAN LOAN, C. 1996. Matrix Computations,
third ed. The Johns Hopkins University Press, Baltimore.

GRINSPUN, E., KRYSL, P., AND SCHRÖDER, P. 2002. CHARMS:
A Simple Framework for Adaptive Simulation. ACM Trans. on
Graphics 21, 3 (July), 281–290.

HOMESCU, C., PETZOLD, L., AND SERBAN, R. 2006. Error es-
timation for reduced-order models of dynamical systems. SIAM
Journal of Numerical Analysis 43, 4, 1693–1714.

HUANG, J., LIU, X., BAO, H., GUO, B., AND SHUM, H.-Y. 2006.
An efficient large deformation method using domain decompo-
sition. Computers and Graphics 30, 927–935.

IDELSOHN, S., AND CARDONA, A. 1985. A reduction method
for nonlinear structural dynamic analysis. Computer Methods in
Applied Mechanics and Engineering 49, 253–279.

IRVING, G., TERAN, J., AND FEDKIW, R. 2004. Invertible finite
elements for robust simulation of large deformation. In ACM
SIGGRAPH Symposium on Computer Animation, 131–140.

JAMES, D. L., AND PAI, D. K. 2004. BD-Tree: Output-sensitive
collision detection for reduced deformable models. ACM Trans-
actions on Graphics 23, 3 (Aug.), 393–398.

JAMES, D. L., AND TWIGG, C. D. 2005. Skinning mesh anima-
tions. ACM Transactions on Graphics 24, 3 (Aug.), 399–407.

KAUFMAN, D. M., SUEDA, S., JAMES, D. L., AND PAI, D. K.
2008. Staggered projections for frictional contact in multibody
systems. ACM Trans. on Graphics 27, 5 (Dec.), 164:1–164:11.

KRY, P. G., JAMES, D. L., AND PAI, D. K. 2002. EigenSkin:
Real Time Large Deformation Character Skinning in Hardware.
In ACM SIGGRAPH Symposium on Computer Animation, 153–
160.

KRYSL, P., LALL, S., AND MARSDEN, J. E. 2001. Dimensional
model reduction in non-linear finite element dynamics of solids
and structures. International Journal for Numerical Methods in
Engineering 51, 479–504.

LABELLE, F., AND SHEWCHUK, J. R. 2007. Isosurface stuffing:
Fast tetrahedral meshes with good dihedral angles. ACM Trans-
actions on Graphics 26, 3 (Aug.), 57.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose Space
Deformations: A Unified Approach to Shape Interpolation and
Skeleton-Driven Deformation. In Proceedings of ACM SIG-
GRAPH 2000, 165–172.

MAGNENAT-THALMANN, N., LAPERRIÈRE, R., AND THAL-
MANN, D. 1988. Joint-dependent local deformations for hand

animation and object grasping. In Proceedings on Graphics in-
terface, 26–33.

MEYER, M., AND ANDERSON, J. 2007. Key Point Subspace
Acceleration and Soft Caching. ACM Transactions on Graphics
26, 3 (July), 74.

MEYER, M., AND MATTHIES, H. G. 2003. Efficient model reduc-
tion in non-linear dynamics using the Karhunen-Lóeve expan-
sion and dual-weighted-residual methods. Computational Me-
chanics 31, 179–191.

MOLINO, N., BAO, Z., AND FEDKIW, R. 2004. A virtual node
algorithm for changing mesh topology during simulation. ACM
Trans. on Graphics 23, 3 (Aug.), 385–392.

NEALEN, A., MULLER, M., KEISER, R., BOXERMAN, E., AND
CARLSON, M. 2005. Physically based deformable models in
computer graphics. In Eurographics: State of the Art Report.

O’BRIEN, J., AND HODGINS, J. 1999. Graphical modeling and
animation of brittle fracture. ACM Trans. on Graphics, 137–146.

OGOT, M., LIANG, Y., AND CUITINO, A. 1996. Hybrid simula-
tion strategy for multiple planar collisions with changing topolo-
gies and local deformation. Finite Elements in Analysis & De-
sign 23, 2-4, 225–239.

RYCKELYNCK, D., HERMANNS, L., CHINESTA, F., AND
ALARCÓN, E. 2005. An efficient a priori model reduction for
boundary element models. Engineering Analysis with Boundary
Elements 29, 796–801.

RYCKELYNCK, D. 2005. A priori hyperreduction method: an adap-
tive approach. Journal of Computational Physics 202, 1, 346 –
366.

RYCKELYNCK, D. 2009. Hyper-reduction of mechanical models
involving internal variables. International Journal for Numerical
Methods in Engineering 77, 75–89.

SHABANA, A. A. 1990. Theory of Vibration, Volume II: Discrete
and Continuous Systems. Springer–Verlag, New York, NY.

TERAN, J., SIFAKIS, E., IRVING, G., AND FEDKIW, R. 2005.
Robust quasistatic finite elements and flesh simulation. In ACM
SIGGRAPH Symposium on Computer Animation, 181–190.

TERZOPOULOS, D., AND FLEISCHER, K. 1988. Deformable mod-
els. The Visual Computer 4, 6 (Dec.), 306–331.

TERZOPOULOS, D., AND WITKIN, A. 1988. Physically Based
Models with Rigid and Deformable Components. IEEE Com-
puter Graphics & Applications 8, 6 (Nov.), 41–51.

TERZOPOULOS, D., PLATT, J., BARR, A., AND FLEISCHER, K.
1987. Elastically Deformable Models. In Computer Graphics
(Proceedings of SIGGRAPH 87), 205–214.

TREUILLE, A., LEWIS, A., AND POPOVIĆ, Z. 2006. Model re-
duction for real-time fluids. ACM Transactions on Graphics 25,
3 (July), 826–834.

UTKU, S., CLEMENTE, J., AND SALAMA, M. 1985. Errors in
reduction methods. Computers and Structures 21, 6, 1153–1157.

WANG, X. C., AND PHILLIPS, C. 2002. Multi-Weight Enveloping:
Least-Squares Approximation Techniques for Skin Animation.
In ACM SIGGRAPH Symposium on Computer Animation, 129–
138.

WICKE, M., STANTON, M., AND TREUILLE, A. 2009. Modular
bases for fluid dynamics. ACM Trans. on Graphics 28, 3 (Aug.),
39.

