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Abstract—We present a method for computing ambient occlusion (AO) for a stack of images of a Lambertian scene from a fixed
viewpoint. Ambient occlusion, a concept common in computer graphics, characterizes the local visibility at a point: it approximates
how much light can reach that point from different directions without getting blocked by other geometry. While AO has received
surprisingly little attention in vision, we show that it can be approximated using simple, per-pixel statistics over image stacks, based
on a simplified image formation model. We use our derived AO measure to compute reflectance and illumination for objects without
relying on additional smoothness priors, and demonstrate state-of-the art performance on the MIT Intrinsic Images benchmark. We
also demonstrate our method on several synthetic and real scenes, including 3D printed objects with known ground truth geometry.

Index Terms—Ambient occlusion, intrinsic images, image stacks, pixel statistics
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1 INTRODUCTION
Many vision methods estimate physical properties of a
scene from images taken under varying illumination.
Some notable examples include recovering surface nor-
mals using photometric stereo [1], [2], [3], recovering dif-
fuse reflectance and illumination as intrinsic images [4],
[5], and computing low-dimensional models of appear-
ance of objects and scenes [6], [7]. However, these meth-
ods typically disregard the effect of the local visibility
of illumination in determining shading. Further, many
of these methods require calibrated setups (e.g., known
lighting directions), special priors (e.g., smoothness of
surface reflectance), or limiting assumptions (e.g., no cast
shadows).

In our work1, we revisit such estimation problems by
posing the following question: what can we tell about
a scene point simply by observing its appearance under
many different, unknown illumination conditions? The
appearance of a point over such an image stack depends
on many factors, such as the point’s albedo and the dis-
tribution of illuminations. However, a key observation is
that the local visibility of a point—i.e., its accessibility to
light from different directions, often modeled as ambient
occlusion (AO) in computer graphics—is also an impor-
tant property in determining its appearance in images.
We show that we can estimate ambient occlusion in
Lambertian scenes directly from image observations, by
introducing a simple pixel-wise, aggregate statistic ( in
Figure 1), and relating this statistic to ambient occlusion.
To do so, we consider a physical model of a point with
a cone of visibility to the hemisphere, lit by a moving
point light and constant ambient light over the image
stack. We then combine this model with our statistic to
infer ambient occlusion for each scene point. This kind

1. This publication is an expanded version of [8].
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Fig. 1. Our method takes as input a stack of images cap-
tured with varying, unknown illumination and computes
a per-pixel statistic () over this stack. This statistic is
then combined with simple physical model of the local
geometry at each point and illumination to obtain an
estimate of the local visibility. Local visibility is then used
together with the average image to obtain an estimate for
per-point albedo (reflectance), which itself can be used to
compute illumination for the original input images.

of lighting visibility is often treated as a nuisance in
computer vision methods, and in many cases is simply
ignored. In contrast, we explicitly model such visibility
for each scene point, and use it to aid in estimating other
physical parameters, such as surface albedo. The result is
a photometric approach to estimating ambient occlusion
and albedo.

Our method has several key properties: we do not
require knowledge of light positions, explicit scene ge-
ometry, or surface normals. The setup for acquisition
is simple, requiring a point light source and a camera.
However, we do assume that light source positions vary
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uniformly over the full hemisphere, although in practice
we achieve good results even when this assumption does
not hold. Note that we use the term image “stack” to re-
fer to a set of images of the same scene lit under varying
illumination, but captured from the same viewpoint. No
frame-by-frame coherence or ordering is implied.

Our work has two main contributions:
• A per-pixel, image-space approach to estimating

ambient occlusion that does not require information
about the underlying geometry.

• A new method for intrinsic image decomposition
using our model of ambient occlusion, accounting
for local visibility at each point.

We demonstrate our method in experiments on several
scenes. These include artificially generated images from
a physically based renderer, as well as real objects cap-
tured in a laboratory environment. Our experiments on
real objects include a validation on 3D printed objects
with known geometry, including the TENTACLE dataset
in Figure 1. In addition, we show that our method—
despite its simplicity and its per-pixel analysis of a scene,
without additional smoothness priors—outperforms cur-
rent approaches on the MIT intrinsic images bench-
mark [9]. This demonstrates the utility of reasoning
about AO when measuring properties of scenes from
images. We also present a detailed analysis of several
aspects of our model, including its performance with
respect to albedo color, number of input images, and the
effects of inter-reflections. Finally, we discuss limitations
and avenues for future work such as generalizing the
model to handle outdoor illumination.

2 AMBIENT OCCLUSION

Ambient Occlusion (AO) [10] is a measure of light acces-
sibility commonly used in computer graphics to properly
account for ambient illumination. Formally, for a single
scene point x, AO is the integral over the hemisphere:

AO(x) =

1

⇡

Z

⌦
V (x, ~!)h~n, ~!id! (1)

of the local visibility function V (x, ~!) (i.e. V (x, ~!) = 1

if there are no occluders between point x and the envi-
ronment in direction ~!, V (x, ~!) = 0 otherwise) weighted
by the dot product h~n, ~!i between direction ~! and the
point normal ~n. For an example, see Figure 8. At points
where most of hemisphere is occluded, e.g., in a deep
crevice, V is mostly 0 and so AO is close to 0, while for
points whose visibility of the hemisphere is unoccluded,
AO is 1. If the albedo at x is ⇢, the measured radiance
due to constant, ambient illumination with intensity l

a

can be expressed as:

I
a

= ⇢⇡l
a

AO (2)

Note that this only considers the first bounce of light
(direct illumination), and as such does not account for
interreflections.

Two properties of ambient occlusion that are useful
in computer vision are: (1) it is independent of surface
albedo, and so variation and discontinuities are due
only to scene geometry, and (2) it explains in a simple
way why regions with same albedo can have different
intensities even when lit with uniform illumination [11].

In computer graphics, the main focus is on computing
AO in 3D scenes to render images [12], [13], [14]. In
contrast, we are interested in estimating AO from a set of
images illuminated by a varying, unknown light source.

3 RELATED WORK
Ambient occlusion in computer vision. Ambient occlu-
sion has received relatively little attention in computer
vision. Some examples of its use include early work in
shape-from-shading [11], where it was used in models of
images under diffuse illumination, as well as more recent
work that considers AO in various applications. In the
context of high-quality face capture, Beeler et al. [15]
and Aldrian and Smith [16] model AO by assuming a
uniform, constant, light source, and require an initial es-
timate of the geometry. In the area of multi-view stereo,
Wu et al. assume that a scene consists of a single albedo,
and so the scene brightness under uniform area lighting
is itself a good approximation to AO (e.g., darker regions
are more occluded) [17]. Our work is also related to
methods that recover shape from AO [11], [18], and our
algorithm could potentially be used to generate inputs
to such methods.

Intrinsic image decomposition. For the problem of
intrinsic image decomposition from large photo collec-
tions, Laffont et al. require accurate estimates of the
albedo for a sparse set of 3D scene points [19]. To account
for points that are darker due to AO, they compute
AO explicitly by generating and analyzing a 3D scene
reconstruction. Similarly, Kyong et al. compute light
accessibility in order to decompose frames from video
sequences, in their case geometry is recovered by using
a depth camera [20].

In contrast to these methods, we do not explicitly
model geometry, and instead reason about AO purely
from observed pixel values. This yields a very simple
approach that could be used as a pre-process to account
for light visibility in other vision algorithms.

Our work is also related to methods that analyze pixel
intensity variation in images under varying illumination.
Weiss proposed a method for intrinsic images from
image sequences [4], derived from a model of edge
intensities. In that work, a final step involves integrating
a gradient field to compute a reflectance image. In our
experience, and in agreement with other reports [9], this
integration performs poorly in the presence of soft and
persistent shadows (exactly the kind caused by AO), and
we find that it can also propagate noise across the image.
In contrast, our method explicitly models one cause of
soft shadows (namely AO), and does not require a final
integration step, which we find makes the algorithm
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more robust. For outdoor scenes illuminated by the sun,
Sunkavalli et al. recover albedo and normals by directly
tracking the intensity of pixel values over time [21].
While they use heuristics to determine whether a pixel
is in shadow, our method makes no such hard decisions,
instead reasoning about statistics over the entire image
sequence. In more recent work, Barron and Malik opti-
mize for reflectance, shape, and illumination from single
images under strong priors on illumination and color of
natural scenes [22]. In contrast, our method operates at
a per-pixel level and does not make assumptions about
the texture in the scene.

Photometric stereo. Photometric stereo techniques [23]
are similar to our method in their setup and the fact
that they estimate albedo, but differ in that they re-
cover different information about shape (surface nor-
mals), compared to our work. Our approach is especially
related to uncalibrated photometric stereo, in which the
light sources are unknown [24], [1]. A key challenge
in photometric stereo is dealing with shadows, either
by detecting them in some manner [25], [2] (a non-
trivial problem with surfaces of varying albedo or com-
plex self-occlusions), or treating them as a source of
noise or outliers [26], [27]. Photometric stereo methods
have become increasingly robust to shadows and other
sources of error (such as specularities) through more
sophisticated methods. In contrast, we show that by
adopting a simple explicit model of shadowing through
AO, we can achieve robustness using a very simple
approach. We provide a more detailed discussion our
method in relation to photometric stereo in Section 8.

Sunkavalli et al. reason about lighting visibility of
surface points, by clustering them into “visibility sub-
spaces” that see a common set of lights [2]. However,
they use an implicit model of lighting visibility that
grows in complexity as the number of lighting conditions
increases. In contrast, our method relies on a simple per-
pixel measure of ambient occlusion that becomes more
robust as more images are added. In addition, our model
incorporates ambient illumination as well as directional
lighting.

4 A MODEL FOR AMBIENT OCCLUSION IN IM-
AGE STACKS
We now describe how to obtain a simple approximation
to ambient occlusion (AO) by observing pixel intensities
in multiple images under varying directional lighting.
We first introduce a physically-based image formation
model for our measure of AO, then use this model to
derive AO and albedo from image sequences.

4.1 Inputs and image formation model
Our method takes as input a set of images, I1, I2, . . . , In

,
captured from a fixed camera observing a static, Lamber-
tian scene. The scene is lit by an unknown, directional
light source that changes from image to image, together
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Fig. 2. Histogram of pixel intensities for two points of
TENTACLE over an image stack (only blue color channel).
Notice that even though the two points have very similar
albedos their histograms are quite different due to local
visibility. Point A is mostly occluded with respect to the
light source, so its intensity values are in general lower.

with a uniform ambient light source; both have constant
intensity over time. We further assume that the distribu-
tion of directional light sources across the image stack
is uniform over the hemisphere. The images are radio-
metrically calibrated and so the image intensity I(x) at
each pixel x is proportional to the radiance at a given
scene point under a particular illumination. Because the
camera is static, the same pixel x records radiance for
the same scene point in each image. In the following
derivation the images are treated as monochromatic
without loss of generality.

A key idea in our work is that for a given pixel
x, the measured radiances over all images are drawn
from an underlying distribution that we refer to as its
pixel intensity distribution (PID). This distribution of pixel
intensities at a point is related to the distribution of illu-
minations over the image stack, as well as to the albedo
of that point and to the surrounding geometry (which
can occlude the light source from the point of view of
that point). Figure 2 shows an example of observed PIDs
in an image stack for two points. For example, a point
in a deep concavity will very often appear dark, because
light rarely reaches it (only when the light is shining
straight down into the hole). Such a point will have
a PID with mostly low intensity values. (For example,
consider point A in Figure 2.) The intuition then, is
that the samples we record give us information about
a pixel’s PID, which in turn reveals information about
surface albedo and ambient occlusion. As we capture
images lit under more and more possible directions, we
begin to capture the actual underlying PID of a pixel.

As a useful summary of a PID, we introduce a statistic
for a single pixel x over time, which we denote :

(x) =

E [I(x)]

2

E [I(x)

2
]

(3)

where E [·] is the expectation operator over the set of
images. That is,  is the square of the expected (average)
intensity value for that pixel, divided by the expected
squared pixel intensity; this quantity is related to the
coefficient of variation, a normalized measure of variance
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used in statistics.2 Fig. 8 (leftmost image) illustrates  for
an example image stack. In what follows, we show that
this simple ratio of statistics over recorded intensities
yields an approximation to ambient occlusion; to under-
stand this relationship between  and ambient occlusion,
we first describe our image formation model, then relate
this to a physical model of local scene geometry.

For a Lambertian scene, an image formation model
commonly used in intrinsic images literature is:

I(x) = ⇢(x)L(x) (4)

where I(x) 2 R+ is the observed radiance at point x in
the image, ⇢(x) 2 [0, 1) is the diffuse albedo, and L(x) 2
R+ is a factor that depends on both light and geometry.3

Over our sequence of images I , ⇢(x) is constant and
greater than zero, while L(x) varies due to changes in il-
lumination. Under these assumptions, we can substitute
Eq. (4) into the definition of our  statistic in Eq. (3) to
obtain:

 =

E [⇢L]

2

E [⇢2L2
]

=

◆◆⇢
2E [L]

2

◆◆⇢
2E [L2

]

(5)

(for simplicity, we do not explicitly write the dependence
on x, but as before  is a statistic defined per pixel across
the image stack). Thus,  depends only on the lighting
factors L, and not on albedo.

What range of values can  take on? Because  is
the quotient of non-negative numbers, it follows that
 � 0. By observing that Var(I) = E [L2

] � E [L]

2 � 0 we
can also show that   1. For points that never receive
light E [L] = 0 and  = 0 (one can arrive at this via a
limit analysis). For points whose illumination term never
changes we have that Var[I] = E [L2

]� E [L]

2
= 0, which

implies E [L2
] = E [L]

2 and therefore  = 1. This behavior
suggests that  might be useful as a measure of ambient
occlusion at a point.

4.2 A physical model explaining 

So far we have shown that  is independent of albedo
and is bounded. But what exactly does  tell us about
a scene point? As a statistic,  relates to the geometry
and visibility at a point; to show this, we introduce a
simplified geometry and lighting model to connect  to
a physical measure of local visibility.

Our model assumes that the visibility at a point can be
approximated by a cone of angle ↵, resulting in a very
simple relation between the local geometry paramter ↵
and AO:

AO(x) = sin

2
(↵(x)) (6)

This idea, along with our illumination model, is illus-
trated in Figure 3, where a point x on a Lambertian

2. The coefficient of variation, cv , is defined as �
µ , so the statistic

 = 1
1+c2v

.
3. This image formation model should not be confused with the

model classically used in photometric stereo, where L is a vector
describing the light direction; here, the scalar L(x) is simply the
incident illumination at point x.

Fig. 3. A point x on a Lambertian surface is observed by
camera c and illuminated by a distant, moving light source
with intensity l

d

, and a constant ambient term of intensity
l
a

. The local visibility is approximated by a cone with angle
↵. If the light source angle ✓

d

with the surface normal ~n is
larger than ↵, light is blocked and does not reach point x
at the bottom of the valley.

surface, is observed by camera c while illuminated by
two light sources: a directional light with intensity l

d

,
and a background ambient illumination with constant
intensity l

a

. One can think of these two components as
roughly similar to a “sun” (directional) and a “sky,”
(ambient) light source, respectively. Surface geometry
around the point blocks all light outside the cone with
angle ↵ from reaching x. We refer to this angle ↵(x)

as the local visibility angle for point x. Further, across
our input images, we assume that the directional light
uniformly samples the full hemisphere, so each measure
of the radiance of x captured by the camera corresponds
to a different (unknown) position for the light l

d

. Given
these assumptions, and sufficient samples of images un-
der different illumination conditions, (x) only depends
on the local visibility angle ↵(x), and we can derive the
relationship between  and ↵.

We now derive the relationship between  and ↵ given
our model. To begin, each image I is the sum of the
contributions from both light sources:

I = I
d

+ I
a

(7)

The directional component I
d

varies from image to
image and depends on the angle ✓

d

(t) between the
light source direction ~!

d

(t) and the surface normal ~n
at a point, and whether the light is blocked by other
geometry. This component is given by:

I
d

(t) = ⇢l
d

V
↵

(~n, ~!
d

(t))h~n, ~!
d

(t)i (8)
= ⇢l

d

V
↵

(✓(t)) cos ✓
d

(t) (9)

where V
↵

is the light visibility term: V
↵

(✓) = 1 if ✓  ↵
(i.e., the light enters the visibility cone), ands V

↵

(✓) = 0

otherwise. The ambient component I
a

is constant across
the image stack for a given point, and is proportional
to the projected solid angle of the local visibility angle
↵. In particular, from Eqs. (1) and (2) we can integrate
the ambient illumination over the visible potion of the
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hemisphere to derive a closed form relationship between
I
a

and ↵ at a given point:

I
a

= ⇢

Z 2⇡

'=0

Z
↵

✓=0
l
a

cos(✓) sin(✓)d✓d' = ⇢l
a

⇡ sin

2 ↵ (10)

Given this model for I
d

and I
a

, to relate  to our
physical parameter ↵, we compute the expectations in
Eq. (5) over images under varying light source positions:

E [I] = E [I
d

] + E [I
a

] = E [I
d

] + I
a

E [I2
] = E [(I

d

+ I
a

)

2
] = E [I2

d

] + 2I
a

E [I
d

] + I2
a

where we use the linearity of expectation, E [·], and the
assumption that I

a

does not change over the image stack.
Finally, we can compute E [I

d

] and E [I2
d

] in closed form
by integrating over the visible cone of angles at the point,
assuming the point light is uniformly distributed over
the hemisphere for the image stack:

E [I
d

] =

1

2⇡

Z 2⇡

'=0

Z
↵

✓=0
I
d

sin ✓d✓d' =

1

2

⇢l
d

sin

2
(↵) (11)

E [I2
d

] =

1

2⇡

Z 2⇡

'=0

Z
↵

✓=0
I2
d

sin ✓d✓d' = �1

3

⇢2l2
d

�
cos

3
(↵)� 1

�

Given these equations, we can derive  in terms of ↵ as:

(↵) =

E2
[I]

E [I2
]

=

(E [I
d

] + I
a

)

2

E [I2
d

] + 2I
a

E [I
d

] + I2
a

=

3

4

(2⇡l
a

+ l
d

)

2
sin

4
(↵)

3⇡l
a

(⇡l
a

+ l
d

) sin

4
(↵)� l2

d

cos

3
(↵) + l2

d

(12)

which can be further simplified by noting that  actually
depends on the ratio of light source intensities l

a

/l
d

= f
and not their absolute values. After substituting l

a

= fl
d

into Eq. (12) and simplifying we arrive at:

(↵) =

3

4

(2⇡f + 1)

2
sin

4
(↵)

1 + 3⇡f(⇡f + 1) sin

4
(↵)� cos

3
(↵)

(13)

To get a better intuition for , we consider its behavior
under two special cases, l

d

= 0 and l
a

= 0, which
correspond to f !1 and f = 0 respectively:

|
ld=0 = 1 |

la=0 =

3 sin

4
(↵)

4� 4 cos

3
(↵)

In other words, if there is no directional illumination
component (i.e., l

d

= 0) then (↵) is always 1, and
↵ cannot be recovered from pixel measurements alone.
This case corresponds to all images in our stack being
identical, with the scene lit only by an ambient term, so
there is no variation in intensity for each point. In this
case there is no way of directly disambiguating between
shading and reflectance.

If there is no ambient component (i.e., l
a

= 0) then
 increases monotonically in the valid range for ↵ and
is independent of l

d

(as long as l
d

> 0). In Figure 4 we
show (↵) for a few different values of f .

One interesting property of the curves in Figure 4 is
that they have different  values for ↵ = 90

�, ranging

deep crevice
0º 60º

0.2

0.4

0.6

0.8

1.0

90º30º0.0
flat surface(degrees)

Fig. 4. (↵) for different ratios of ambient to direct light f .
Note that as f ! 1 (l

d

= 0) we have a constant curve
((↵) = 1) so information about ↵ cannot be recovered.

from 0.75 to 1 as f goes from 0 to 1. This means that if
we know that a given point in our scene is not occluded
by any other geometry (i.e., ↵ = 90

�, then we can recover
f directly from the value of  for that point:

f()|
↵=90� =

p
3

p
� 2

+ 3� 3

6⇡(1� )

(14)

In summary, we have derived a relation between the
statistic , and the ambient occlusion at a point, using
a physical model of a crevice (with a cone of visibility
characterized by ↵) lit by a varying directional light,
and a constant ambient light over a stack of images. No
assumptions of smoothness or geometric reconstruction
are required to derive this parameter. As we show later,
this physical model, though simple and an approxi-
mation of real scenarios, works surprisingly well in
characterizing the visibility at points in a scene.

5 ALGORITHM

In this section we use our model to compute a per-pixel
local visibility angle ↵(x) and albedo ⇢(x) given a stack
of images of the same scene under varying illumination.
While our derivation has assumed grayscale images, our
algorithm makes use of additional constraints from the
three different color channels; while we solve for a color
albedo and a per-color-channel value for f , ↵ is constant
for a given point, and f is assumed constant over the
image stack and across pixels. Our full algorithm is
described below, and illustrated in Figure 5.

We first compute  using Eq. (3) by assuming f0 = 0

(i.e., ambient lighting is negligible) to derive an initial ↵0

using Eq. (13). We then refine ↵(x) (one value per pixel)
and f (one value per color channel, but constant across
pixels) by minimizing the objective function:

↵1, f1  min

↵,f

X
k

obs

� (↵0, f0)k2 (15)

where the subscript obs stands for “observed”. In other
words, we compute ↵ and f so as to best explain the
observed statistic . In total we have n

c

⇥ n
p

equations,
where n

c

is the number of color channels and n
p

the
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Input Images Image Statistics First Estimate Refined Estimate

Fig. 5. A depiction of the full algorithm for computing the local visibility angle ↵ and the reflectance ⇢. Arrows show how
information flows in our pipeline. Starting with an image stack we compute E [I] and E [I2

], which are used to compute
. We then proceed to obtain a first estimate of the local visibility angle and reflectance, which are then refined using
a non-linear optimization.

number of pixels, and n
p

+ n
c

variables, one ↵ per
pixel and n

c

variables corresponding to the direct to
ambient illumination ratios f . Eq. (15) defines a non-
linear least squares problem, which we minimize using
the trust-region-reflective mode of MATLAB’s
lsqnonlin function.

Given our final estimates ↵1 and f1, we compute
estimates for the albedo ⇢(x) at each point from Eqs. (11)
and (10). We express albedo as a function of the expected
pixel value, the ratio f , the local visibility angle ↵, and
the intensity l

d

of the direct component:

⇢ =

2E [I]

l
d

sin

2
(↵) (1 + 2f⇡)

(16)

Note that there is an inherent ambiguity between light
source intensity l

d

and the scene albedo, so we can
only estimate albedo up to a scale factor. Therefore, we
assume that l

d

= 1 to obtain ⇢1, our final estimate of the
albedo.

6 RESULTS
We begin by demonstrating results for our algorithm on
various datasets (Section 6.1) and exploring the different
outputs the algorithm produces. In Section 6.2 we use an
object with known geometry to measure the error in our
estimate of ambient occlusion. In Section 6.3 we evaluate
our estimate of albedo by comparing our algorithm with
others using the MIT Intrinsic Images benchmark [28].
Finally, Section 7 provides a detailed analysis of various
aspects of our algorithm on a specially manufactured test
object with crevices of varying (and known) depth; this
includes an analysis of convergence rate as the number
of images grows, and the impact of error factors such as
interreflections.

6.1 Image Decomposition
Figure 6 shows image decomposition results on several
datasets, including image stacks used in prior work. For
each dataset we show ambient occlusion, reflectance ⇢,

Fig. 7. 3D printed test objects TENTACLE and LIGHTWELL,
together with a quarter dollar coin (for scale). Black tape
on the sides of LIGHTWELL was added to reduce sub-
surface scattering that resulted from light shining on the
side of the object.

and the illumination. More results can be found on our
project webpage [29].

Datasets. The first dataset, TENTACLE, contains 350
images of a 3D printed object with known geometry.
The light source position in TENTACLE was precisely
controlled by a mechanical gantry allowing us to sample
uniformly random positions over the full hemisphere.
The known geometry lets us compare against ground
truth. Note that, although we use a spherical gantry
for capturing this dataset, this is for the purposes of
evaluation, and our method is motivated by much more
unstructured capture setups. The datasets below are
more representative of the datasets we would expect to
use in practice.

The other datasets are public datasets that violate
the assumptions of our model in various ways. FROG
and SCHOLAR, from [2], contain 47–48 images lit under
varying directional lights that do not cover the full
hemisphere. FACE from the Yale Face Database B+ [30],
contains 64 images with light positions over a range
of angles. This scene violates our assumptions in that
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Fig. 6. Results of our algorithm (2nd estimate). Each column shows results from a different dataset. The rows show 1)
sample images from the original dataset, 2) our estimated AO, 3) albedo, and 4) the illumination in the sample image.

skin is not strictly Lambertian, and exhibits significant
subsurface scattering. Nevertheless we see from the
images for AO and L in Figure 6 that our technique
can qualitatively separate geometry and reflectance quite
well. In particular, one can see from the area around the
mouth that our AO image does not contain texture due
to facial hair. Finally, we show results for TURTLE and
SQUIRREL, from the MIT Intrinsic Image Dataset. Here
the main challenge is that there are only 10 images of
each object lit by a point light source.

Discussion. Figure 6 shows that the recovered AO seems
to match our expectation of local visibility for these
scenes. The recovered albedos are mostly free of shading
and the ambient occlusion map is mostly free of albedo
(e.g., the frog’s nose and the mouth in FACE). It is also
interesting that the pupil in the FACE dataset is black in
the AO image and a light gray in the albedo.

6.2 Ambient Occlusion
We validated our estimate of AO using two objects
of known geometry. In addition to TENTACLE, we 3D
printed another object with a more regular shape, which
we refer to as LIGHTWELL (Figure 7). This object is a
solid block of material with a series of cylindrical holes
of varying but known depth [29]. We printed this object
in four colors: white (original material color), red, green,
and blue to evaluate the impact of different albedos
on our estimates. The acquisition setup for LIGHTWELL
is the same as for TENTACLE (see Section 6.1). It is

worth mentioning that although 3D printing offers good
control over the geometry, material properties cannot be
fully specified. The selected material (sandstone) was
the most diffuse of the available materials, but is still
not perfectly diffuse, and exhibits a fair amount of
subsurface scattering (see the red ray gun of TENTACLE).

Figure 8 compares our AO result for TENTACLE to
the ground truth (a more detailed analysis for the
LIGHTWELL object is presented in Section 7). We can see
qualitatively that our estimate of AO is very similar to
ground truth. One difference is that our estimate appears
smoother; we believe that this is caused in part by
subsurface scattering, as the effect is most noticeable in
the thin areas of the gun. Interreflections likely also have
a smoothing effect in deep crevices. Another difference is
that our estimate is in general darker, meaning that our
algorithm is predicting that locally the geometry is more
occluded than is really is. We attribute this in part to the
material roughness from the 3D printing process. At a
meso-scale level the structure can be thought of as being
composed of many small crevices, and a single pixel in
our  image is an average of all these contributions.

6.3 Albedo
We ran our algorithm on the MIT Intrinsic Images
benchmark [28] to measure the quality of our albedo
estimates. This benchmark consists of 16 objects each
with 11 images, and uses the local mean squared error
(LMSE) defined in [28] to evaluate performance. Some
methods evaluated by the benchmark (e.g., Retinex)
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Ground Truth AOEstimated AO

Fig. 8. Left: the statistic  computed for TENTACLE. Right
two images: Comparison of estimated AO with ground
truth (computer generated). The background clutter is
masked.
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Fig. 9. Comparison of LMSE error on the MIT intrin-
sic image dataset [28] (shorter bars are better, indi-
cating less error). Compared algorithms are: Grayscale
Retinex (GR-RET), Color Retinex (COL-RET), Weiss (W),
Weiss+Retinex (W+RET), ours with only direct term (-D)
and our second estimate containing direct and ambient
terms (-DA).

operate on a single image, usually by imposing priors on
the illumination and albedo images or by using heuris-
tics to classify gradients. However, the best-performing
reported prior method operating on multiple images
combines Retinex [5] with Weiss’s method [4] which, like
our own, requires a stack of images.

We obtain the shading image for each of the input
images by simply dividing the input image by our
estimated albedo (see Eq. (4)). Figure 9 shows our
method’s performance compared to others included in
the benchmark. In Figure 10 we show a subset of results
against the Weiss+Retinex multi-image method. We note
that our approach outperforms the competing methods.
Interestingly, our initial estimate (i.e., f = 0) performs
better than our refined one. We believe that this is a
result of the setup, which indeed contains no ambient
illumination (as assumed by the first estimate of our
algorithm, but not by our refined estimate, leading to
over fitting), and the fact that most objects have a very
high albedo, resulting in a larger contribution due to

interreflections, which are not modeled by our algo-
rithm. For completeness, in Table 1 we also compare
our method to recent single-image algorithms [31], [32],
[33], and report results on the different subsets of the
benchmark dataset used in each prior evaluation. Our
method compares favorably to these methods (but also
uses more than a single image).

7 ANALYSIS
In this section we present a more in-depth analysis
of various aspects of our algorithm on the specially
created LIGHTWELL object (Fig. 7). This object has a very
regular shape, with cylindrical holes of various depths
that match our physical model, allowing us to evaluate
in more detail how different aspects of our model impact
the performance of our algorithm.

7.1 Impact of Albedo on AO Estimates
Because the 3D printed LIGHTWELL object consists of
four different albedos, we can obtain a quantitative
error measure of the local visibility angle ↵ for different
albedos. We report this error in Figure 11, computed by
measuring the average error for ↵ at the center of the
crevice for LIGHTWELL compared to ground truth, for
varying ↵ angles corresponding to the crevice depths
for the printed object. This figure shows four curves, one
for each color of LIGHTWELL. In the plot three trends are
evident. First, the error is larger for brighter albedos (red
and white, in this case). We suspect that this is due to
the increase in light interreflections for higher albedos.
Since our model does not account for this effect, a patch
at the bottom of a deeper hole looks brighter than our
model would predict.

Second, we note that error increases for the more
shallow crevices. We suspect this is due to roughness
in the printed object as discussed in Section 6.2.

A third trend is that deeper holes have the largest
errors. This can be explained by the fact that  is the
quotient of two expectations, and that for regions that
receive light less frequently, we expect these averages to
stabilize more slowly, a property we examine next.

7.2 Convergence Rate
We now consider the impact of the number of images
and the visibility angle in estimating ambient occlusion.
Figure 12 shows the root mean squared error (RMSE)
of our ambient occlusion estimate as a function of the
number of input images for different crevice depths (and
hence local visibility angles). For each hole depth, we
estimate AO at the center of the hole using rendered
images of the blue LIGHTWELL (generated using a phys-
ically based renderer [35]). We compare our estimate to
the ground truth AO in that hole using MSE, and repeat
this process 100 times to compute an average RMSE. We
observe that rate of convergence is strongly dependent
on the depth of the crevice, but our method performs
well even with a relatively small number of images on
scenes where ↵ � 40

�.
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Fig. 10. Comparison of our method with W+Ret from the MIT benchmark. Results are for our first estimate of the
albedo (i.e., ambient illumination is assumed to be zero) as this gave us the best results on the benchmark. We show
here grayscale images as the benchmark uses grayscale versions of the decomposed images in its evaluation metric.
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7.3 Impact of Interreflections

To understand how global illumination affects our
method, we conducted a simple experiment with com-
puter generated images of LIGHTWELL. The object,
which was rendered with a perfect diffuse material and
a reflectance of 0.5, was captured with an orthographic
camera that aims directly towards the crevices, while
illuminated with an ideal directional light source plus
an ambient term (with f = 0.25). We used a physically
based renderer [35] to produce 1000 images sampling
the light direction uniformly at random over the hemi-
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Fig. 12. Average Root Mean Square Error (RMSE) for
our estimate of ambient occlusion vs. number of images
used in the estimate. Each curve represents a different
crevice depth and a corresponding local visibility angle ↵.

sphere. Two sets of images were rendered: one with only
the direct (single-bounce) component of light (that is,
with interreflections and other indirect effects disabled
in the rendering) and the other with both direct and
indirect illumination components.

The error in the estimate of AO at the center of each
crevice is shown in Figure 13. For the ideal case (only
direct component of illumination) the ambient occlusion
is in general very close to ground truth, with a max
absolute error of 0.0172 (where the max possible error



10

TABLE 1
Local Mean Squared Error (LMSE) for individual images of our algorithm for the 1st (only direct light) and 2nd

estimates (direct and ambient term), together with results from other work when available. In the last four columns of
the last row we show our average on the same subset of images as reported by [28], [31], [33], [32], [34]. On all

cases our algorithm outperforms these prior methods. Note that the numbers marked with † are the geometric mean
as reported in [34], other averages are arithmetic means.

Ours Ours
(1st estimate) (2nd estimate)

refl shading avg refl shading avg Weiss
+

Retinex
[28]

Barron
and

Malik
[31]

Shen
and
Yeo
[33]

Shen,
Yang,

Li, and
Jia [32]

Barron
and

Malik
[34]

apple 0.006 0.0060 0.006 0.006 0.006 0.006 0.016 0.010

box 0.004 0.0040 0.004 0.005 0.005 0.005 0.010 0.002 0.011

cup1 0.003 0.0020 0.002 0.003 0.002 0.002 0.005 0.004 0.005

cup2 0.003 0.0010 0.002 0.003 0.001 0.002 0.002 X 0.005 0.007 X
deer 0.027 0.0160 0.021 0.037 0.021 0.029 0.043 X 0.032 X

dinosaur 0.015 0.0120 0.014 0.016 0.007 0.012 0.015 0.021

frog1 0.020 0.0180 0.019 0.029 0.026 0.027 0.043 0.053 0.029

frog2 0.056 0.0120 0.034 0.053 0.017 0.035 0.053 X 0.043 0.024 X
panther 0.008 0.0060 0.007 0.024 0.014 0.019 0.005 0.008 0.005

paper1 0.004 0.0040 0.004 0.010 0.008 0.009 0.003 0.001 0.013

paper2 0.007 0.0040 0.006 0.009 0.006 0.008 0.005 X 0.003 0.016 X
pear 0.006 0.0050 0.005 0.006 0.004 0.005 0.006 X 0.010 X

phone 0.011 0.0080 0.010 0.035 0.013 0.024 0.008 0.011

potato 0.011 0.0080 0.009 0.006 0.006 0.006 0.010 X 0.014 X
raccoon 0.011 0.0090 0.010 0.015 0.011 0.013 0.005 X 0.005 0.008 X
squirrel 0.019 0.0240 0.022 0.020 0.025 0.023 0.027 0.037

sun 0.004 0.0050 0.005 0.007 0.005 0.006 0.003 X 0.002 0.007 X
teabag1 0.007 0.0160 0.012 0.012 0.033 0.023 0.014 X 0.027 0.063 X
teabag2 0.003 0.0110 0.007 0.012 0.020 0.016 0.006 0.015 0.031

turtle 0.017 0.0200 0.019 0.020 0.026 0.023 0.015 X 0.017 0.025 X
average 0.012 0.0095 0.011 0.016 0.013 0.015 0.015 0.019 0.015 0.019 0.021

†

our avg on same subset 0.011 0.012 0.010 0.011 0.009

†

1

would be 1.0). When indirect illumination is present the
local visibility angle is overestimated for the holes in
the center of the range, reaching an error of 0.0753 for
↵ = 30

�. This happens because at the middle of the ↵
range the contribution from the indirect light is closest
to that of direct light, which means that the discrep-
ancy between our model and what is observed is at its
maximum. At the extremities of the range two different
phenomena decrease the effect of global illumination.
For the shallower crevices many direct light paths reach
the bottom of the crevice decreasing the relative effect of
indirect illumination. For deeper crevices, on the other
hand, most paths that reach the bottom of the crevice
do go through multiple bounces of light. Nevertheless,
at each bounce the light is attenuated by the cosine factor
(due to the angle of incidence and the surface normal)

multiplied by the albedo, so by the time it reaches the
bottom of the crevice it is attenuated so much that the
total contribution from all indirect paths is still smaller
than that of the direct ones.

Albedo also plays a role in the error when global
illumination is present. In this experiment we used
⇢ = 0.5. For larger values of albedo the mode of the
error will shift towards deeper crevices, because the light
is attenuated less after each bounce.

8 DISCUSSION
In this section we discuss our method in relation to
other photometric methods in computer vision. We also
discuss limitations of our work, including aspects of our
method that we believe would be interesting avenues for
future work.
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Fig. 13. Impact of interreflections in our estimates. Top:
two renderings of LIGHTWELL, only the direct component
of light and then with interreflections included (notice that
shadows are brighter due to reflected light). Middle plot
shows a cut through the rendered LIGHTWELL ambient
occlusion estimate versus ground truth. Interreflections
cause our method to over estimate ambient occlusion.
Bottom bar plot shows the absolute error in the estimated
ambient occlusion at the center of the crevices.

Relation to photometric stereo. An alternative to our
method is to run uncalibrated photometric stereo on an
image stack (uncalibrated because our method is de-
signed for the case when light directions are unknown).
One way to think of such a method is as a version of
the multi-image intrinsic image decomposition problem,
one that sets up an explicit physical model involving
geometry and lighting. This is in contrast to typical
intrinsic images methods (such as that of Weiss [4]) that
reason about lighting as an image layer that modulates
a reflectance layer. Like photometric stereo, our method
uses a physical model, but one that parameterizes local
geometry using a simple crevice model, rather than
by surface normal. This difference yields an interesting
set of strengths and weaknesses relative to photometric
stereo. Our method:

3 explicitly models non-convexity per-pixel without
any smoothness or neighborhood reasoning,

3 generalizes to color albedo in a straightforward
way,

3 is simple and robust,
7 does not yield surface normals,
7 requires a sufficient sampling of light source direc-

tions (although our experiments show that it can
work well even with a small number of images).

There are likely an interesting set of new techniques
to be discovered that combine aspects of our method,
intrinsic images, and photometric stereo. For instance, a
generalization of our technique could include an explicit
representation of surface normal. On a related note, we
believe it would be useful to unify the datasets used
to evaluate intrinsic images (such as the MIT Intrinsic
Images dataset) and photometric stereo, so that different
types of multi-image methods can be compared directly.

Relation to multi-view stereo. Another alternative ap-
proach to our problem would be to reconstruct explicit
geometry using multi-view stereo. At that point, ambient
occlusion can be reasoned about explicitly using the
known geometry. This approach could be used if we are
given multiple views of a scene, or have the freedom to
capture such views (e.g., with a gantry). In contrast, our
method works from a static viewpoint and in fact was
designed for more uncontrolled capture setups. More-
over, multi-view stereo techniques can have difficulty in
capturing fine details close to the resolution of the sensor,
whereas our method operates on each pixel indepen-
dently to compute a simplified, per-pixel representation
of local geometry. In fact, it would be interesting to try to
use our approach to derive an explicit representation of
detailed geometry (i.e., geometry from ambient occlusion).

Specularities. In deriving our algorithm one of our key
assumptions is that the scene is Lambertian. Although
the objects we used to evaluate our algorithm are mostly
diffuse, specularities are occasionally present, leading to
artifacts in the estimated AO and albedo. It is worth
analyzing these artifacts in order to draw insights on
how to improve our method. One such specular region
is the right eyelid of FROG, shown in Figure 14. We
observe that in the region where specular highlights
occur (indicated by an arrow) the corresponding AO is
darker than it should be (the surface on the actual eyelid
is smooth, without any depressions) while the albedo
is brighter. To understand why this happens, imagine
how the physical model of Figure 3 can explain the
observations we are given for this region. Since the point
is not in fact heavily occluded, in most images the pixel
color is roughly the albedo of the underlying material
attenuated by the cosine factor of the light direction and
the point normal. A small fraction of the observations
are bright white due to the specular reflection. This
can be explained with the crevice model by having (1)
albedo that is the color of the direct light, (2) a deep
crevice, and (3) an ambient term that is roughly the
color of the albedo. In this situation the bright white
(which corresponds in reality to a specular reflection)
occurs when the direct light reaches the bottom of the
crevice and reflects back. Otherwise, the color recorded
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Image AO Albedo

Fig. 14. Artifacts caused by specularities can be seen in
the eyelid of FROG. On the left we show an image from the
image stack with the inset highlighted. The arrow shows
a region where specular highlights occur. Note that on the
AO image that region appears darker than it should and
on the albedo image it appears brighter.

by the camera is due to the ambient light. In practice, the
ambient light color is also constrained by the rest of the
data, but nonetheless we see effects like those illustrated
in Figure 3.

Outdoor Illumination. All the results we have shown up
to this point are for images acquired in a lab setting. To
investigate how well our method performs on outdoor
images illuminated by the sun, we placed TENTACLE on
the roof of a building, oriented so that it faced south,
and acquired 100 images over the course of a day in early
September at a latitude of 42

�
26

0
36

00N. The estimated AO
and albedo are shown in Fig. 15. Arrows in the figure
highlight some of the artifacts we observed, which we
believe are caused by the fact that the sun does not cover
the entire hemisphere around the object. This results in
some points being illuminated by the sun much less
often than our model expects. In particular, points with
normals that face away from the sun path are never
sunlit, which results in estimated albedos that are much
darker than they should be; the persistent shadows on
these points become effectively “baked” into the albedo.

For image stacks that span more time (this dataset had
images from only a single day) we expect the problem
to be less pronounced, as the sun covers a wider band
of the sky. Because this band changes with latitude, the
location of the artifacts will also change as a function of
the location of the object on the Earth’s surface.

Aside from light source distribution, outdoor illumi-
nation breaks several of the assumptions made in our
model. For instance, the color and relative intensity of
the direct (sun) and indirect (sky) terms vary over time.
For a more in depth exploration of the effects of outdoor
illumination and an extension to the algorithm presented
in this work for natural illumination we refer the reader
to Hauagge et al. [36].

Color in . When introducing  in Section 4 we focused
on monochromatic images; we now discuss a property
of the statistic  that arises when dealing with color
images. In this case  is computed independently for
each channel resulting in one f per channel: f

R

, f
G

,
and f

B

for the red, green, and blue color channels. In
Eq. (5) we showed that the statistic  is independent
of the albedo ⇢, yet a red tint appears on the ray gun

Fig. 15. Test with outdoor illumination for TENTACLE. Left:
sample images, Middle: estimated ambient occlusion,
Right: estimated albedo. Arrows highlight artifacts due
to non-uniform coverage of the sky by the light source,
causing shadows and highlights to get “baked” into the
albedo.

of TENTACLE (Fig. 8 left). What does this color reveal
about lighting? Because the direct component of light in
our setup was white, color in  is due to an ambient
term.

Let’s focus on a single point in the scene. Geometry
at a point is the same across color channels so we can
restrict our analysis to a single angle ↵ without loss of
generality. For instance, in Fig. 4 let’s focus on ↵ = 90

�.
If the ambient term is blue, with f

R

= 0, f
G

= 0, and
f

B

= 0.1, what we will see in  is that 
R

= 
G

< 
B

,
so the color in the  image reflects the color of the
ambient term. This allows us to estimate the hue of the
ambient term directly from . In the acquisition setup
for Fig. 8 there was no ambient light, only a direct
source was present. We believe that the red tint in the
 image on the ray gun is due to interreflections and
subsurface scattering. Even thought this source of light
is not constant, it varies much slower that the direct term
so it can be thought of as a “local ambient” term.

We believe that this analysis could be useful in ex-
tending our method to account for interreflections and
subsurface scattering.

9 CONCLUSIONS

Ambient occlusion, a measure of local visibility at a
point, plays an important role in the shading of surfaces.
We introduce an image-space approach to estimating
ambient occlusion from a set of images under varying,
unknown illumination. Our method analyzes the scene
in terms of a physical model of a visibility cone, lit by
a varying point light over the image stack. We propose
a simple, per-pixel statistic, , based on observed inten-
sities over the set of images; from , we recover per-
pixel ambient occlusion and albedo values by relating
our physical model to this measured statistic. Despite its
simplicity, we show that this statistical approach works
well in practice for a range of real-world image stacks. In
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the future, it would be worth considering other statistics
that might correlate to other physical properties.

Our assumption of diffuse materials with no inter-
reflections is surprisingly effective. However, in the pres-
ence of specularities, subsurface scattering, or significant
interreflections, our albedo estimates are less accurate.
While our per-pixel statistic does not propagate errors,
it would be interesting to couple our approach with
sparsity or smoothness priors, or to incorporate models
of inter-reflection. Our crevice model assumes a conical
visibility model; in the future, we could extend this to
include anisotropy so as to better match more general
visibility scenarios.
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