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Abstract

The JMatch language extends Java withiterable abstract
pattern matching, pattern matching that is compatible with
the data abstraction features of Java and makes iteration ab-
stractions convenient. JMatch has ML-style deep pattern
matching, but patterns can be abstract; they are not tied to
algebraic data constructors. A single JMatch method may
be used in several modes; modes may share a single imple-
mentation as a boolean formula. Modal abstraction simpli-
fies specification and implementation of abstract data types.
This paper describes the JMatch language and its implemen-
tation.

1 Introduction

Object-oriented languages have become a dominant pro-
gramming paradigm, yet they still lack features considered
useful in other languages. Functional languages offer ex-
pressive pattern matching. Logic programming languages
provide powerful mechanisms for iteration and backtrack-
ing. However, these useful features interact poorly with the
data abstraction mechanisms central to object-oriented lan-
guages. Thus, expressing some computations is awkward in
object-oriented languages.

In this technical report, we present the design and imple-
mentation of JMatch, a new object-oriented language that
extends Java [GJSB00] with support foriterable abstract
pattern matching—a mechanism for pattern matching that is
compatible with the data abstraction features of Java and that
makes iteration abstractions more convenient. This mecha-
nism subsumes several important language features:

• convenient use and implementation of iteration ab-
stractions (as in CLU [L+81], ICON [GHK81], and
Sather [MOSS96].)
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• convenient run-time type discrimination without casts
(for example, Modula-3’stypecase [Nel91])

• deep pattern matching allows concise, read-
able deconstruction of complex data structures
(as in ML [MTH90], Haskell [Jon99] and Cy-
clone [JMG+02].)

• multiple return values

• views [Wad87]

• patterns usable as first-class values [PGPN96, FB97]

JMatch exploits two key ideas:modal abstractionandin-
vertible computation. Modal abstraction simplifies thespec-
ification (and use) of abstractions; invertible computation
simplifies theimplementationof abstractions.

JMatch constructors and methods may be modal abstrac-
tions: operations that support multiplemodes[SHC96].
Modes correspond to different directions of computation,
where the ordinary direction of computation is the “forward”
mode, but backward modes may exist that compute some or
all of a method’s arguments using an expected result. Pattern
matching uses a backward mode. A mode may specify that
there can be multiple values for the method outputs; these
can be easily iterated over in a predictable order. Modal ab-
straction simplifies the specification and use of abstract data
type (ADT) interfaces, because where an ADT would ordi-
narily have several distinct but related operations, in JMatch
it is often natural to have a single operation with multiple
modes.

The other key idea behind JMatch is invertible computa-
tion. Computations may be described by boolean formulas
that express the relationship among method inputs and out-
puts. Thus, a single formula may implement multiple modes;
the JMatch compiler automatically decides for each mode
how to generate the outputs of that mode from the inputs.
Each mode corresponds to a different direction of evaluation.
Having a single implementation helps ensure that the modes
implement the abstraction in a consistent manner, satisfying
expected equational relationships.

These ideas appear in various logic programming lan-
guages, but it is a challenge to integrate these ideas into
an object-oriented language in a natural way that enforces
data abstraction, preserves backwards compatibility, and per-
mits an efficient implementation. JMatch is not a general-
purpose logic-programming language; it does not provide
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the full power of unification over logic variables. This choice
facilitates an efficient implementation. However, JMatch
does provide more expressive pattern matching than logic-
programming, along with modal abstractions that are first-
class values (objects).

Although JMatch extends Java, little in this technical re-
port is specific to Java. The ideas in JMatch could easily be
applied to other garbage-collected object-oriented languages
such as C# [Mic01] or Modula-3 [Nel91].

A prototype compiler for JMatch is available for down-
load. It is built using the Polyglot extensible Java com-
piler framework [NCM02], which supports source-to-source
translation into Java.

This technical report is an expanded version of an ear-
lier paper, including more examples and a more detailed de-
scription of the syntax and semantics of JMatch. The rest
of the technical report is structured as follows. Section 2
provides an overview of the JMatch programming language.
Section 3 gives examples of common programming idioms
that JMatch supports clearly and concisely. Section 4 de-
scribes static checking of JMatch, including type checking,
multiplicity checking, and static mode selection. Section 5
describes the implementation of the prototype compiler. Sec-
tion 6 discusses related work. Section 7 summarizes and
concludes with a discussion of useful extensions to JMatch.

Appendices A–C give a semantics for JMatch as a trans-
lation to Java. This semantics includes support forinterrupt-
ible iterators,which is not described in this technical report,
though it is described elsewhere [LM05]. The specific con-
structs include interrupts and interrupt handlers.

2 Overview of JMatch

JMatch provides convenient specification and implementa-
tion of computations that may be evaluated in more than one
direction, by extending expressions toformulasandpatterns.
Named abstractions can be defined for formulas and pat-
terns; these abstractions are calledpredicate methods, pat-
tern methods, andpattern constructors. JMatch extends the
meaning of some existing Java statements and expressions,
and adds some new forms. It is backwards compatible with
Java.

2.1 Formulas

Syntactically, a JMatch formula is similar to a Java expres-
sion of boolean type, but where a Java expression would
permit a subexpression of typeT , a formula may include
a variable declaration with typeT . For example, the expres-
sion2 + int x == 5 is a formula that is satisfied whenx
is bound to3.

JMatch has alet statement that tries to satisfy a formula,
binding new variables as necessary. For example, the state-
mentlet 2 + int x == 5; causesx to be bound to3 in
subsequent code (unless it is later reassigned). If there is no

satisfying assignment, an exception is raised. To prevent an
exception, anif statement may be used instead. The con-
ditional may be any formula with at most one solution. If
there is a satisfying assignment, it is in scope in the “then”
clause; if there is no satisfying assignment, the “else” clause
is executed but the declared variables are not in scope. For
example, the following code assignsy to an array index such
thata[y] is nonzero (thesingle restricts it to the first such
array index), or to-1 if there is no such index:

int y;
if (single(a[int i] != 0)) y = i;
else y = -1;

A formula may contain free variables in addition to the
variables it declares. The formula expresses a relation among
its various variables; in general it can be evaluated in sev-
eral modes. For a given mode of evaluation these variables
are eitherknownsor unknowns. In the forward mode, all
variables, including bound variables, are knowns, and the
formula is evaluated as a boolean expression. In backward
modes, some variables are unknowns and satisfying assign-
ments are sought for them. If JMatch can construct an al-
gorithm to find satisfying assignments given a particular set
of knowns, the formula issolvablein that mode. A formula
with no satisfying assignments is considered solvable as long
as JMatch can construct an algorithm to determine this.

For example, the formulaa[i] == 0 is solvable if the
variablei is an unknown, but not if the variablea is an un-
known. The modes of the array index operator[ ] do not
include any that solve for the array, because those modes
would be largely useless (and inefficient).

Some formulas have multiple satisfying assignments; the
JMatchforeach statement can be used to iterate through
these assignments. For example, the following code adds the
indices of all the non-zero elements of an array:

foreach(a[int i] != 0) n += i;

In formulas, the single equals sign (=) is overloaded
to mean equality rather than assignment, while preserving
backwards compatibility with Java. The symbol= corre-
sponds to semantic equality in Java (that is, theequals
method of classObject). Formulas may use either pointer
equality (==) or semantic equality (=); the difference be-
tween the two is observable only when an equation is evalu-
ated in forward mode, where the Javaequalsmethod is used
to evaluate=. Otherwise an equation is satisfied by mak-
ing one side of the equation pointer-equal to the other—and
therefore also semantically equal. Because semantic equal-
ity is usually the right choice for JMatch programs, concise
syntax is important. The other Java meanings for the symbol
= are initialization and assignment, which can be thought of
as ways to satisfy an equation.
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2.2 Patterns

A pattern is a Java expression of non-boolean type except
that it may contain variable declarations, just like a formula.
In its forward mode, in which all its variables are knowns,
a pattern is evaluated directly as the corresponding Java ex-
pression. In its backward modes, the value of the pattern is
a known, and this value is used to reconstruct some or all of
the variables used in the pattern. In the example above, the
subexpression2 + int x is a pattern with typeint, and
given that its value is known to be5, JMatch can determine
x = 3. Inversion of addition is possible because the addition
operator supports the necessary computational mode; not all
binary operators support this mode. Another pattern is the
expressiona[int i]. Given a valuev to match against, this
pattern iterates over the arraya finding all indicesi such that
v = a[i]. There may be many assignments that make a pat-
tern equal to the matched value. When JMatch knows how to
find such assignments, the pattern ismatchablein that mode.
A patternp is matchable if the equationp = v is solvable for
any valuev.

The Javaswitch statement is extended to support gen-
eral pattern matching. Each of thecase arms of aswitch
statement may provide a pattern; the first arm whose pattern
matches the tested value is executed.

The simplest pattern is a variable name. If the type
checker cannot statically determine that the value being
matched against a variable has the same type, a dynamic type
test is inserted and the pattern is matched only if the test suc-
ceeds. Thus, atypecase statement [Nel91] can be concisely
expressed as aswitch statement:

Vehicle v; ...
switch (v) {

case Car c: ...
case Truck t: ...
case Airplane a: ...

}

For the purpose of pattern matching there is no difference
between a variable declaration and a variable by itself; how-
ever, the first use of the variable must be a declaration.

2.3 Pattern constructors

One way to define new patterns ispattern constructors,
which support conventional pattern matching, with some in-
crease in expressiveness. For example, a simple linked list
(a “cons cell”, really) naturally accommodates a pattern con-
structor:

public class List implements Collection {
Object head;
List tail;
public List(Object h, List t)
returns(h, t) (
head = h && tail = t

)
...

}

This constructor differs in two ways from the correspond-
ing Java constructor whose body would read{head = h;
tail = t; }. First, the mode clausereturns(h,t) indi-
cates that in addition to the implicit forward mode in which
the constructor makes a new object, the constructor also sup-
ports a mode in which the result object is a known and the
argumentsh andt are unknowns. It is this backward mode
that is used for pattern matching. Second, the body of the
constructor is a simple formula (surrounded by parentheses
rather than by braces) that implements both modes at once.
Satisfying assignments tohead andtail will build the ob-
ject; satisfying assignments toh andt will deconstruct it.

For example, this pattern constructor can be applied in
ways that will be familiar to ML programmers:

List l;
...
switch (l) {

case List(Integer x,
List(Integer y, List rest)):

...
default:
...

}

Theswitch statement extracts the first two elements of the
list into variablesx andy and executes the subsequent state-
ments. The variablerest is bound to the rest of the list. If
the list contains zero or one elements, thedefault case ex-
ecutes with no additional variables in scope. Even for this
simple example, the equivalent Java code is awkward and
less clear. In the code shown, the constructor invocations do
not use thenew keyword; the use ofnew is optional.

The List pattern constructor also matches against sub-
classes ofList; in that case it inverts the construction of
only theList part of the object.

It is also possible to match several values simultaneously:

List l1, l2; ...
switch (l1, l2) {

case List(Integer x,
List(Integer y, List rest)),

List(y, _):
...

default:
...

}
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The first case executes if the listl1 has at least two elements,
and the head of listl2 exists and is anInteger equal to the
second element ofl1. The remainder ofl2 is matched using
the wildcard pattern “_”.

In this example of a pattern constructor, the constructor
arguments and the fields correspond directly, but this need
not be the case. More complex formulas can be used to
implement views as proposed by Wadler [Wad87] (see Sec-
tion 3.5).

The example above implements the constructor using a
formula, but backwards compatibility is maintained; a con-
structor can be written using the usual Java syntax.

2.4 Methods and modal abstraction

The language features described so far subsume ML pattern
matching, with the added power of invertible boolean for-
mulas. JMatch goes further; pattern matching coexists with
abstract data types and subtyping, and it supports iteration.

Methods withboolean return type arepredicate meth-
ods that define a named abstraction for a boolean formula.
The forward mode of a predicate method expects that all ar-
guments are known and executes the method normally. In
backward modes, satisfying assignments to some or all of
the method arguments are sought. Assuming that the vari-
ous method modes are implemented consistently, the corre-
sponding forward invocation using these satisfying assign-
ments would have the resulttrue.

Predicate methods with multiple modes can make ADT
specifications more concise. For example, in the Java Col-
lections framework theCollection interface declares sep-
arate methods for finding all elements and for checking if a
given object is an element:

boolean contains(Object o);
Iterator iterator();

In any correct Java implementation, there is an equational
relationship between the two operations: any objectx pro-
duced by the iterator object satisfiescontains(x), and any
object satisfyingcontains(x) is eventually generated by
the iterator. When writing the specification forCollection,
the specifier must describe this relationship so implementers
can do their job correctly.

By contrast, a JMatch interface can describe both opera-
tions with one declaration:

boolean contains(Object o) iterates(o);

This declaration specifies two modes: an implicit forward
mode in which membership is being tested for a particular
objecto, and a backward mode declared byiterates(o),
which iterates over all contained objects. The equational re-
lationship is captured simply by the fact that these are modes
of the same method.

An interface method signature may declare zero or more
additional modes that the method implements, beyond the

default, forward mode. A modereturns(x1, . . . , xn),
wherex1, . . . , xn are argument variable names, declares a
mode that generates a satisfying assignment for the named
variables. A modeiterates(x1, . . . , xn) means that the
method iterates over aset of satisfying assignments to the
named variables.

Invocations of predicate methods may appear in formulas.
The following code iterates over the Collectionc, finding all
elements that are lists whose first element is a green truck;
the loop body executes once for each element, with the vari-
ablet bound to theTruck object.

foreach (c.contains(List(Truck t, _)) &&
t.color() = GREEN)

System.out.println(t.model());

2.5 Implementing methods

A linked list is a simple way to implement theCollection
interface. Consider the linked list example again, where the
contains method is no longer elided:

public class List implements Collection {
Object head; List tail;
public List(Object h, List t) returns(h, t) ...
public boolean contains(Object o) iterates(o) (

o = head || tail.contains(o)
)

}

As with constructors, multiple modes of a method may be
implemented by a formula instead of a Java statement block.
Here, the formula implements both modes ofcontains. In
the forward mode there are no unknowns; in the backward
mode the only unknown iso, as the clauseiterates(o)
indicates.

In the backward mode, the disjunction signals the pres-
ence of iteration. The two subformulas separated by|| de-
fine two different ways to satisfy the formula; both will be
explored to find satisfying assignments foro.

The modes of a method may be implemented by sepa-
rate formulas or by ordinary Java statements, which is useful
when no single boolean formula is solvable for all modes, or
it leads to inefficient code. For example, the following code
separately implements the two modes ofcontains:

public boolean contains(Object o) {
if (o.equals(head)) return true;
return tail.contains(o);

} iterates(o) {
o = head;
yield;
foreach (tail.contains(Object tmp)) {

o = tmp;
yield;

}
}
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For backward modes, results are returned from the method
by theyield statement rather than byreturn. Theyield
statement transfers control back to the iterating context,
passing the current values of the unknowns. While this code
is longer and no faster than the formula above, it is simpler
than the code of the corresponding Java iterator object. The
reason is that iterator objects must capture the state of itera-
tion so they can restart the iteration computation whenever a
new value is requested. In this example, the state of the itera-
tion is implicitly captured by the position of theyield state-
ment and the local variables; restarting the iteration is auto-
matic. In essence, iteration requires the expressive power of
coroutines [Con63, L+81, GHK81]. Implementing iterator
objects requires coding in continuation-passing style (CPS)
to obtain this power [HFW86], which is awkward and error-
prone [MOSS96]. The JMatch implementation performs a
CPS conversion behind the scenes (see Section 5).

2.6 Pattern methods

JMatch methods whose return type is not boolean arepattern
methodswhose result may be matched against other values if
the appropriate mode is implemented. Pattern methods pro-
vide the ability to deconstruct values even more abstractly
than pattern constructors do, because a pattern method de-
clared in an interface can be implemented in different ways
in the classes that implement the interface.

For example, many data structure libraries contain several
implementations of trees (e.g., binary search trees, red-black
trees, AVL trees). When writing a generic tree-walking al-
gorithm it may be useful to pattern-match on tree nodes to
extract left and right children, perhaps deep in the tree. This
would not be possible in most languages with pattern match-
ing (such as ML or Haskell) because patterns are built from
constructors, and thus cannot apply to different types. An
abstract data type is implemented in these languages by hid-
ing the actual type of the ADT values; however, this prevents
any pattern matching from being performed on the ADT val-
ues. Thus, pattern matching is typically incompatible with
data abstraction.

By contrast, in JMatch it is possible to declare pattern
methods in an interface such as theTree interface shown on
the left side of Figure 1. As shown in the figure, these pattern
methods can then be used to match the structure of the tree,
without knowledge of the actualTree implementation being
matched.

An implementation of the pattern methodsnode and
empty for a red-black tree is shown on the right side of Fig-
ure 1. Here there are two classes implementing red-black
trees. For efficiency there is only one instance of the empty
class, calledtheEmptyTree. Thenode andempty pattern
methods are only intended to be invoked in the backwards
mode for pattern-matching purposes. Thus, the ordinary
forward mode is implemented by the unsatisfiable formula
false.

class List {
Object head; List tail;
static List append(List prefix, Object last)
returns(prefix, last) (
prefix = null && // single element
result = List(last, null)

else // multiple elements
prefix = List(Object head, List ptail) &&
result = List(head, append(ptail, last))

)
}
List l; ...
switch(l) {
case List.append(List.append(_, Object o1),

Object o2):
...

}

Figure 2: Reversible list append

As this example suggests, the rule for resolving method
invocations is slightly different for JMatch. A non-static pat-
tern methodm of classT can be invoked using the syn-
tax T.m, in which case the receiver of the method is the
object being matched. JMatch has a pattern operatoras;
the pattern (P1 as P2) matches a value if bothP1 andP2

match it. A patternT.m() is syntactic sugar for the pattern
(T y as y.m()) wherey is fresh.

Within a pattern method there is a special variableresult
that represents the result of the method call. Mode declara-
tions may mentionresult to indicate that the result of the
method call is an unknown. In the default, forward mode the
only unknown is the variableresult. During the method
calls shown in Figure 1, the variableresult will be bound
to the same object as the method receiverthis. This need
not be true if the pattern method is invoked on some object
other than the result—which allows the receiver object to be
used as a first-class pattern. (The expressionthis is always
a known in non-static methods.)

Figure 2 shows an example of a static pattern method;
append appends an element to the list in the forward di-
rection but inverts this operation in the backward direction,
splitting a list into its last element and a prefix list. In this
version ofList, empty lists are represented bynull. The
append method is static so that it can be invoked on empty
lists. Theswitch statement shows that pattern matching can
extract the last two elements of a list.

This example uses a disjunctive logical connective,else,
which behaves like|| except that the right-hand disjunct
generates solutions only if the left-hand disjunct has not. An
else disjunction does not by itself generate multiple solu-
tions in backward modes; bothelse and|| are short-circuit
operators in the forward mode where the proposed solution
to the formula is already known.
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d

c

b

interface Tree {
Tree node(Tree left, Tree right, Object o)

returns(left, right, o);
Tree empty();

}

Tree a = ...;
...
switch (a) {

case Tree.node(Tree.node(Tree b,
Tree.node(Tree c,

Tree.empty())),
Tree d):

...
}

(specification and use)

class RedBlackNode implements Tree {
RedBlackNode lf, rg;
int color; // RED or BLACK
Object value;
Tree node(Tree left, Tree right)
( false ) // forward mode
returns (left, right) (
left = lf &&
right = rg

)
Tree empty() returns()
( false ) // both modes

...
}
class RedBlackEmpty implements Tree {

static Tree theEmptyTree = RedBlackEmpty();
Tree node(Tree left, Tree right)
returns (left, right)
( false ) // both modes

Tree empty()
returns() ( result = theEmptyTree )

...
}

(implementation)

Figure 1: Deep abstract pattern matching

This example also demonstrates reordering of conjuncts
in different modes. The algorithm for ordering conjuncts is
simple: JMatch solves one conjunct at a time, and always
picks the leftmost solvable conjunct to work on. This rule
makes the order of evaluation easy to predict, which is im-
portant if conjuncts have side effects. While JMatch tends
to encourage a functional programming style, it does not at-
tempt to guarantee that formulas are free of side-effects, be-
cause side-effects are often useful.

In this example, in the backward mode the first conjunct
is not initially solvable, so the conjuncts are evaluated in re-
verse order—in the multiple-element case,result is first
broken into its parts, then the prefix of its tail is extracted
(recursively using theappend method), and finally the new
prefix is constructed.

Pattern methods and pattern constructors obey similar
rules; the main difference is that whenresult is an un-
known in a pattern constructor, the variableresult is au-
tomatically bound to a new object of the appropriate type,
and its fields are exposed as variables to be solved. The list-
reversal example shows that pattern methods can construct
and deconstruct objects too.

2.7 Built-in patterns

Many of the built-in Java operators are extended in JMatch
to support additional modes. As mentioned earlier, the array

index operator[] supports new modes that are easy to spec-
ify if we consider the operator on the typeT[] (array ofT)
as a method namedoperator[] after the C++ idiom:

static T operator[](T[] array, int index)
iterates(index, result)

That is, an array has the ability to automatically iterate over
its indices and provide the associated elements. Note that
other than the convenient syntax of array indexing and the
type parameterization that arrays provide, there is no special
magic here; it is easy to write code using theyield state-
ment to implement this signature, as well as for the other
built-in extensions.

The arithmetic operations+ and- are also able to solve
for either of their arguments given the result. In Java, the op-
erator+ also concatenates strings. In JMatch the concatena-
tion can be inverted to match prefixes or suffixes; all possible
matching prefix/suffix pairs can also be iterated over.

Within formulas, relational expressions are extended to
support a chain of relational comparisons. Certain integer
inequalities are treated as built-in iterators: formulas of the
form (a1 ρ1 a2 ρ2 . . . ρn−1 an), wherea1 andan are solv-
able, and all of theρi are either< or <= (or else all> or >=).
These formulas are solved by iteration over the appropriate
range of integers betweena1 andan. If < or <=, the iteration
ascends, otherwise it descends. For example, the following
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two statements are equivalent except that the first evaluates
a.length only once:

foreach (0 <= int i < a.length) { ... }
for (int i = 0; i < a.length; i++) { ... }

2.8 Iterator objects

Java programmers are accustomed to performing iterations
using objects that implement theIterator interface. An
Iterator is an object that acts like an input stream, deliv-
ering the next object in the iteration whenever itsnext()
method is called. ThehasNext() method can be used to
test whether there is a next object.

Iterator objects are usually unnecessary in JMatch, but
they are easy to create. Any formulaF can be converted into
a corresponding iterator object using the special expression
syntaxiterate C(F). Given a formula with unknowns
x1, . . . , xn, the expression produces an iterator object that
can be used to iterate over the possible solutions to the for-
mula. Each time thenext() method of the iterator is called,
a container object of classC is returned that has public fields
namedx1, . . . , xn bound to the corresponding solution val-
ues.

Iterator objects in Java sometimes implement aremove
method that removes the current element from the collec-
tion. Iterators with the ability to remove elements can be
implemented by returning the (abstract) context in which the
element occurs. This approach complicates the implementa-
tion of the iterator and changes its signature. Better support
for such iterators remains future work.

2.9 Exceptions

The implementation of forward modes by boolean formulas
raises the question of what value is returned when the for-
mula is unsatisfiable. TheNoSuchElementException ex-
ception is raised in that case.

Methods implemented as formulas do not have the ability
to catch exceptions raised during their evaluation; a raised
exception propagates out from the formula to the context us-
ing it. If there is a need to catch exceptions, the method must
be implemented as a statement block instead.

In accordance with the expectations of Java programmers,
exceptions raised in the body of aforeach iteration cannot
be intercepted by the code of the predicate being tested.

3 Examples

A few more detailed examples will suggest the added expres-
sive power of JMatch.

3.1 Functional red-black trees

A good example of the power of pattern matching is the code
for recursively balancing a red-black tree on insertion. Cor-

class Node extends RBTree {

int value;

int color; // RED or BLACK
RBTree left, right;

..

public RBTree insert(int x) {

let Node(_,int v,RBTree l,RBTree r) = ins(x);

return new Node(BLACK, v, l, r)

}

Node ins(int x) { // internal insert
if (x == value) return this;

if (x < value) return balance(color, value,

left.ins(x), right);

else return balance(color, value,

left, right.ins(x));

}

protected static Node

balance(int color, int value,

RBTree left, RBTree right) {

if (color == BLACK) {

switch (value, left, right) {

case int z,

Node(RED, int y,

Node(RED,int x,RBTree a,RBTree b),

RBTree c),

RBTree d:

case z, Node(RED,x,a,Node(RED,y,b,c)), d:

case x, c, Node(RED,z,Node(RED,y,a,b),d):

case x, a, Node(RED,y,b,Node(RED,z,c,d)):

return Node(RED,y,Node(BLACK,x,a,b),

Node(BLACK,z,c,d));

}

}

return new Node(color, value, left, right);

}

Figure 3: Balancing red-black trees

men et al. [CLR90] present pseudocode for red-black tree
insertion that takes 31 lines of code yet gives only two of the
four cases necessary. Okasaki [Oka98a] shows that for func-
tional red-black trees, pattern matching can reduce the code
size considerably. The same code can be written in JMatch
about as concisely. Figure 3 shows the key code that bal-
ances the tree. The four cases of the red-black rotation are
handled by four cases of theswitch statement that share a
singlereturn statement, which is permitted because they
solve for the same variables (a–d, x–z).

3.2 Binary search tree membership

Earlier we saw that for lists, both modes of thecontains
method could be implemented as a single, concise formula.
The same is true for red-black trees:

7



public boolean contains(int x) iterates(x) (

left != null && x < value && left.contains(x) ||

x = value ||

right != null && x > value && right.contains(x)

)

In its forward mode, this code implements the usual
O(log n) binary search for the element. In its backward
mode, it iterates over the elements of the red-black tree in
ascending order, and the testsx < value andx > value
superfluously check the data-structure invariant. Automatic
removal of such checks is future work.

3.3 Hash table membership

The hash table is another collection implementation that ben-
efits in JMatch. Here is thecontains method, with three
modes implemented by a single formula:

class HashMap {

HashBucket[] buckets;

int size;

...

public boolean contains(Object key, Object value)

returns(value) iterates(key, value) (

int n = key.hashCode() % size &&

HashBucket b = buckets[n] &&

b.contains(key, value)

)

}

In the forward mode, the code checks whether the
(key,value) binding is present in the hash table. In the sec-
ond mode, a key is provided and a value efficiently located if
available. The final mode iterates over all (key,value) pairs in
the table. The hash table has chained buckets (HashBucket)
that implementcontains similarly to the earlierList im-
plementation. In the final, iterative mode, the built-in array
iterator generates the individual bucketsb; the checkn =
hash(key) becomes a final consistency check on the data
structure, because it cannot be evaluated untilkey is known.

The signature of the methodHashBucket.contains is
the same as the signature ofHashMap.contains, which is
not surprising because they both implement maps. The var-
ious modes ofHashMap.contains use the corresponding
modes ofHashBucket.contains and different modes of
the built-in array index operator. This coding style is typical
in JMatch.

A comparison to the standard Java collection class
HashMap [GJSB00] suggests that modal abstraction can sub-
stantially simplify class signatures. Thecontains method
provides the functionality of methodsget, iterator,
containsKey, containsValue, and to a lesser extent the
methodskeySet andvalues.

3.4 Parsing

Abstract pattern matching can make parsing convenient, as
shown in the code of Figure 4, which parses Lisp-style S-

static String sexp(String rest, Object AST)

returns (rest, AST) (

String s = stripWS(result) && (

s = atom(rest, String name) && name = AST

else

s = "(" + list(")"+rest, List l) && l = AST

)

)

static String list(String rest, List AST)

returns(rest, AST) (

String s = stripWS(result) && (

s.charAt(0) = ’)’ && s = rest && AST = null

else

s = sexp(list(rest, List l), Object o) &&

AST = List(o, l)

)

)

static String atom(String rest, String name)

returns (rest, name) (

String s = stripWS(result) &&

s = char c + atom(rest, String suffix) &&

atomChar(c) &&

name = c + suffix

)

Figure 4: Parsing s-expressions

expressions [McC60].
The code consists of three methods that correspond di-

rectly to the grammar for s-expressions. In its back-
ward mode, the methodsexp parses an s-expression that
is a prefix of the result string it is matched against.
The parsed s-expression is returned inAST, and the un-
consumed suffix of the string is left inrest. The
other two methods operate similarly but parse lists of s-
expressions and atoms, respectively. For example, solv-
ing "(a (b c)) d" = sexp(String r, Object AST)
results inr being bound tod andAST being bound to the list
["a", ["b", "c"]] (the latter is not legal Java syntax).

This code relies on two elided methods,stripWS and
atomChar, which respectively strip leading white space and
report whether a character can be part of an atom. Note the
extensive use of pattern matching on string concatenation.

3.5 Simulating views

Wadler has proposed views [Wad87] as a mechanism for rec-
onciling data abstraction and pattern matching. For example,
he shows that the abstract data type of Peano natural num-
bers can be implemented using integers, yet still provide the
ability to pattern-match on its values. Figure 5 shows the
equivalent JMatch code. Wadler also gives an example of
a view of lists that corresponds to the modes of the method
append shown in Section 2.6.

In both cases, the JMatch version of the code offers the
advantage that the forward and backwards directions of the
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class Peano {

private int n;

private Peano(int m) returns(m) ( m = n )

public Peano succ(Peano pred) returns(pred) (

pred = Peano(int m) && result = Peano(m+1)

)

public Peano zero() returns() ( result = Peano(0) )

}

Figure 5: Peano natural numbers ADT

view are implemented by a single formula, ensuring consis-
tency. In the views version of this code, separatein andout
functions must be defined and it is up to the programmer to
ensure that they are inverses.

4 Syntax and static semantics

4.1 JMatch syntactic extensions

The following grammar productions describe how the
Java 1.4 grammar [GJSB00] is extended in a backwards-
compatible way to become the JMatch grammar. The no-
tation is EBNF: large brackets are used to indicate optional
terminals or nonterminals, large parentheses are used as a
grouping structure, and Kleene star is used to indicate zero
or more repetitions.

The grammar described here includes syntax for support-
ing interruptible iterators [LM05].

4.1.1 Method and constructor declarations

Java method declaration headers are extended to include in-
terrupt and trap-exception declarations:

MethodDeclaratorRest →
FormalParameters

ˆ
[ ]

˜ `
Throws | Traps

´∗`
MethodBody | ;

´
InterfaceMethodDeclaratorRest →

FormalParameters
ˆ
[ ]

˜ `
Throws | Traps

´∗ ;
Throws → throws QualifiedIdentifierList
Traps → traps QualifiedIdentifier

ˆ
: QualifiedIdentifierList

˜
Method declaration bodies are extended to include mode

declarations and implementations:

MethodBody →ˆ
DefaultImpl

˜ `
Impl

´∗ ˆ
AbstractModes ;

˜
(but not empty)

DefaultImpl → ImplBody
Impl →

`
Mode

´∗ ImplBody
ImplBody → Block | ( Formula )
AbstractModes →

`
Mode

´∗
Mode →`

iterates | returns
´
(

ˆ
Identifier, . . ., Identifier

˜
)

Similar extensions exist for Java constructor declarations:

ConstructorDeclaratorRest →
FormalParameters

`
Throws | Traps

´∗ ConstructorBody
ConstructorBody →

ˆ
DefaultImpl

˜ `
Impl

´∗
(but not empty)

4.1.2 Statement extensions

A few new statements are added:

Statement → . . .
| foreach ( Formula ) Statement
| let Formula ;
| yield ;
| cond {

`
( Formula ) Statement

´∗ˆ
else Statement

˜
}

| raise Expression ;

| resume
`
break | continue | yield

´`
TrapClause

´∗
TrapClause → trap ( FormalParameter ) Block

Thelet andforeach statements were described in Sec-
tion 2. Thecond statement (from LISP [Ste90]), is similar
to if except that it supports multiple conditions. Theraise
andresume statements are used for raising and handling in-
terrupts.

The syntax of some other Java statements is modified:

IfStatement → if ( Formula ) Statement
ˆ
else Statement

˜
SwitchStatement →

switch ( Expression, . . ., Expression ) SwitchBlock
SwitchLabel →

case Expression, . . ., Expression where Formula :
| default :

Catches →
`

CatchClause | TrapClause
´
+

CatchClause → . . .
| catch ( trap FormalParameter ) Block

Theif statement is extended to allow any formula as the
conditional. The real grammar is more complicated because
of the usual dangling-else problem.

In aswitch statement, the correspondingcase labels can
be arbitrary patterns, with an optional side condition speci-
fied by awhere clause.

Thetry statement is extended to include declarators for
interrupt and trap-exception handlers.

4.1.3 Expression extensions

Formulas are boolean expressions, extended with theelse
operator.

Formula → ConditionalOrExpression
ConditionalOrExpression → . . .

| ConditionalOrExpression else

ConditionalAndExpression

Conjunction expressions are extended to containtry ex-
pressionsfor specifying exception and interrupt handlers.

9



ConditionalAndExpression → TryExpression
| ConditionalAndExpression TryExpression

TryExpression → InclusiveOrExpression
| InclusiveOrExpression

`
CatchClause | TrapClause

´
+

Expressions are extended to allow the declarations of vari-
ables to solve for, as well as some other new expression
forms:

PostfixExpression →
. . .

| Type VariableDeclaratorId
| iterate Identifier ( Formula )
| single ( Expression )

| _

Thesingle construct can be used on formula or pattern
to prevent more than one set of solutions; it turns a formula
or pattern with multiple solutions into one with a single so-
lution.

As in ML [MTH90], the underscore (_) is a wildcard pat-
tern that can be matched against any value.

To avoid parentheses around most equality tests, JMatch
gives the operator= higher precedence than&& or ||. This
change requires juggling a few productions. Note that the
pattern operatoras shows up here.

StatementExpression → Assignment
| RelationalExpression

RelationalExpression →
RelationalExpression RelOp InstanceofExpression

RelOp → == | = | != | < | > | <= | >=
EqualityExpression → RelationalExpression
InstanceofExpression → ShiftExpression
| InstanceofExpression instanceof ReferenceType
| InstanceofExpression as ShiftExpression

4.2 Type checking

Like Java programs, JMatch programs are type-checked stat-
ically. However, the introduction of modes creates new obli-
gations for static checking. Type checking JMatch expres-
sions, including formulas and patterns, is little different from
regular Java type checking, since the types are the same in all
modes, and the forward mode corresponds to ordinary Java
evaluation.

The interface and abstract class conformance rules in Java
are extended in a natural way to handle method modes:
to implement an interface or to extend an abstract class, a
JMatch class must implement all the methods in all their
modes, as declared in the interface or abstract class being
implemented or extended. A method can add new modes to
those defined by the superclass.

One change to type checking is in the treatment of pattern
method invocations. When a non-static method is invoked

with the syntaxT.m, it is a pattern method invocation of
methodm of typeT . It would be appealing to avoid naming
T explicitly but this would require type inference.

4.2.1 Mode selection

For built-in and user-defined predicate and pattern methods,
the compiler must select the appropriate mode for each use
in a formula or pattern. A pattern is solvable if a value can be
found for the pattern, along with corresponding assignments
to the variables it declares, even in the absence of a value
to match against. If a value is needed to match against, the
pattern is matchable.

Mode selection puts patterns into a canonical form in
which they can solved in left-to-right order. In canonical
form, conjuncts occur in the order in which they are to be
solved. In addition, equality tests are ordered so that the pat-
tern on the left side is solvable and the right side is match-
able, using the solved value of the left side.

When a pattern or formula is solved, it provides values
for all unknown variables used by the formula. The only
exception to this occurs in the case of disjunctions, where
values are provided only for those variables used in all arms
of the disjunction.

For constructor and method invocations, there may be
more than one mode that permits solution of the pattern or
formula. The first step is to determine the set ofusable
modes. A mode is usable if all the arguments provided to
known formal parameters are solvable patterns.

Given the set of usable modes, the best mode is selected,
based on an ordering of modes. Each mode has amultiplic-
ity, which is either1 (single) or∗ (multiple), depending on
whether it has at most one solution or possibly many solu-
tions (thereturns anditerates modes, respectively.)

A partial ordering of predicate modes is defined as fol-
lows. First an ordering on multiplicities is defined:1 ≤ ∗.
If modesM1(U1) andM2(U2) have respective multiplicities
M1 andM2 and respective unknown setsU1 andU2, then
M1(U1) ≤ M2(U2) iff M1 ≤ M2 andU1 ⊆ U2. From the
subset of the usable modes that are minimal in this order, the
first mode declared in the receiver type is selected. Usually
there is only one minimal usable mode, so declaration order
does not matter.

4.2.2 Multiplicity checking

In JMatch it is a static error to use a formula or pattern
with multiple solutions when a single solution is expected,
because solutions might be silently discarded. Multiplicity
checking ensures that a formula or pattern with multiplicity
∗ cannot be used in a context (such as anif or let) where
a single solution is expected. Thesingle operator may be
used to explicitly convert the multiplicity.

Usually, the multiplicity of a formula or pattern is simply
the join of the multiplicities of its subformulas or subpat-
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terns. Any formula, pattern, constructor, or method used in
the forward direction is singular. Otherwise:

• Disjunctions have multiplicity∗.

• Wildcard patterns have multiplicity1.

• Thesingle of a formula or pattern has multiplicity1.

• Constructor, method and built-in operator invocations
have a multiplicity defined by the mode used.

5 Implementation

The JMatch compiler is built using the Polyglot compiler
framework for Java language extensions [NCM02]. Polyglot
supports both the definition of languages that extend Java
and their translation into Java.

5.1 Translating JMatch to Javayield

In the prototype implementation, JMatch is translated into
Java by way of an intermediate language called Javayield,
which is the Java 1.4 language extended withyield, try
...trap, andresume statements [LM05] that can only be
used to implement iterator objects. Executingyield causes
the iterator to return control to the calling context. The itera-
tor object constructor and the methodsnext andhasNext
are automatically implemented in Javayield. Each subse-
quent invocation ofnext on the iterator returns control to
the point just after the execution of the previousyield
statement. Appendix A provides this translation, which is
straightforwardly defined using a few mutually inductively
defined syntax-directed functions.

5.2 Translating Javayield to Java

Javayield code that does not contain theyield statement is
translated as is. In iterator implementations, theyield state-
ment is eliminated by converting the iterator code into a state
machine. The form of code for an iterator classITER that re-
turns variablesxi is shown in Figure 6, which refers to the
framework classjmatch.runtime.Iterator given in Ap-
pendix B.

The code of the iterator, broken up intoyield-free frag-
ments, appears within theswitch statement in the method
peek. The variable$state$ explicitly captures the control
state of the iterator so it can be restarted by branching to
the appropriate case arm. Eachyield statement causes the
correspondingcase arm to terminate by updating the vari-
able$state$ and returning to the caller. The translated code
can also jump among the variouscase arms by changing the
value of$state$ and executing acontinue.

Handlers for exceptions, interrupts, and trap excep-
tions [LM05] are similarly translated and appear in the
switch statement in the methodpeek. Handler dispatch is

class ITER extends jmatch.runtime.Iterator {

Ti $i; // unknowns
Tj zj; // local variables
boolean peek() throws Throwable {

while (true) {

try {

switch($state$) {

case 0: ...

case 1: ...

...

case N: ...

}

} catch (Throwable $t$) {

$thrown$ = $t$;

if (!findHandler()) throw $t$;

continue;

} } }

boolean findHandler() {

while (true) {

switch($state$) {

case 0: ...

case 1: ...

...

case N: ...

} } } }

Figure 6: Output of the translation from Javayield

managed by the methodfindHandler: depending on the
current control state of the iterator and the type of the ex-
ception or interrupt to be handled, the$state$ variable is
updated to dispatch control to the appropriate handler.

The translation, given in Appendix C, is essentially a con-
version to continuation-passing style.

5.3 Implementation status

Most of the language described in this paper is imple-
mented in the current JMatch compiler prototype found at
http://www.cs.cornell.edu/Projects/jmatch. Cer-
tain features of JMatch have not yet been implemented,
though their implementation has been designed. The reverse
modes of the string concatenation operator are implemented
in a user-defined library but the operator+ syntactic sugar is
not.

While the performance of the translated code is asymptot-
ically acceptable, several easy optimizations would improve
code quality.

6 Related work

Prolog is the best-known declarative logic programming lan-
guage. It and many of its descendents have powerful unifi-
cation in which a predicate can be applied to an expression
containing unsolved variables. JMatch lacks this capability
because it is not targeted specifically at logic programming
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tasks; rather, it is intended to smoothly incorporate some ex-
pressive features of logic programming into a language sup-
porting data abstraction and imperative programming.

ML [MTH90] and Haskell [HJW92, Jon99] are well-
known functional programming languages that support pat-
tern matching, though patterns are tightly bound to the con-
crete representation of the value being matched. Because
pattern matching in these languages requires access to the
concrete representation, it does not coexist well with the data
abstraction mechanisms of these languages. However, an ad-
vantage of concrete pattern matching is the simplicity of an-
alyzingexhaustiveness; that is, showing that some arm of a
switch statement will match.

Pattern matching has been of continuing interest to the
Haskell community. Wadler’s views [Wad87] support pat-
tern matching for abstract data types. Views correspond to
JMatch constructors, but require the explicit definition of a
bijection between the abstract view and the concrete repre-
sentation. While bijections can be defined in JMatch, often
they can be generated automatically from a boolean formula.
Views do not provide iteration.

Burton and Cameron [BC93] have also extended the views
approach with a focus on improving equational reasoning.
Fähndrich and Boyland [FB97] introduced first-class pat-
tern abstractions for Haskell, but do not address the data
abstraction problem. Palao Gonstanza et al. [PGPN96] de-
scribe first-class patterns for Haskell that work with data
abstraction, but are not statically checkable. Okasaki has
proposed integrating views into Standard ML [Oka98b].
Tullsen [Tul00] shows how to use combinators to construct
first-class patterns that can be used with data abstraction.
Like views, these proposals do not provide iterative patterns,
modal abstraction, or invertible computation.

A few languages have been proposed to integrate func-
tional programming and logic programming [Han97, Llo99,
CL00]. The focus in that work is on allowing partially in-
stantiated values to be used as arguments, rather than on data
abstraction.

In the language Alma-0, Apt et al. [ABPS98] have
augmented Modula-2, an imperative language, with logic-
programming features. Alma-0 is tailored for solving search
problems and unlike JMatch, provides convenient backtrack-
ing through imperative code. However, Alma-0 does not sup-
port pattern matching or data abstraction.

Mercury [SHC96] is a modern declarative logic-
programming language with modules and separate compi-
lation. As in JMatch, Mercury predicates can have several
modes. Modal abstractions are not first-class in Mercury; a
single mode of a predicate can be used as a first-class func-
tion value, but unlike in JMatch, there is no way to pass sev-
eral such modes around as an object and use them to uni-
formly implement another modal abstraction. Mercury has
a more complex mode system that allows a distinction be-
tween exactly-one and at-most-one solution. As in JMatch,
these declarations are checked statically. Mercury does not

support objects.
Several other languages have expressive iteration con-

structs. The language CLU [L+81] first introduced iter-
ators whose use and implementation are both convenient;
the yield statement of JMatch was inspired by CLU.
ICON [GHK81] also has “generators” that can produce more
than one value. Implementation of ICON generators is simi-
lar to that in CLU, although there are some convenient built-
in generators. ICON supports imperative programming and
limited backtracking across statements. Sather provides it-
erator abstractions [MOSS96] with some extensions to the
CLU model. None of these languages have pattern match-
ing.

Juno-2 [NH97] is a constraint-based rendering language
with both imperative and logic-programming features; it can
solve formulas that include numerical equations; predicates
are expanded at application time, so predicate arguments are
not required to be ground values. It does not support data
abstraction.

Pizza also extends Java with support for datatypes and
ML-style pattern matching [OW97], by allowing a class to be
implemented as an algebraic datatype. Because the datatype
is not exposed outside the class, this design does not permit
abstract pattern matching; it does allow a collection of re-
lated implementations to be conveniently packaged together
with some code sharing and pattern matching. Forax and
Roussel have also proposed a Java extension for simple pat-
tern matching based on reflection [FR99].

Ernst et al. have developed predicate dispatch-
ing [EKC98], another way to add pattern matching to an
object-oriented language. In their language, boolean formu-
las control the dispatch mechanism, which allows some en-
coding of some pattern-matching idioms although deep pat-
tern matching is not supported. This approach is comple-
mentary to JMatch, in which object dispatch is orthogonal to
pattern matching. Their language has predicate abstractions
that can implement a single new view of an object, but unlike
JMatch, it does not unify predicates and methods. Predicates
have some limitations: they may not be recursive or iterative
and do not support modal abstraction or invertible computa-
tion.

7 Conclusions

JMatch extends Java with the ability to describe modal ab-
stractions: abstractions that can be invoked in multiple dif-
ferent modes, or directions of computation. Modal abstrac-
tions can result in simpler code specifications and more read-
able code through the use of pattern matching. These modal
abstractions can be implemented using invertible boolean
formulas that directly describe the relation that the abstrac-
tion computes. In its forward mode, this relation is a func-
tion; in its backward modes it may be one-to-many or many-
to-many. JMatch provides mechanisms for conveniently ex-
ploring this multiplicity.
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JMatch is backwards compatible with Java, but provides
expressive new features that make certain kinds of programs
simpler and clearer. While for some such programs, using a
domain-specific language would be the right choice, having
more features in a general-purpose programming language is
handy because a single language can be used when building
large systems that cross several domains.

A prototype of the JMatch compiler has been released for
public experimentation, and improvements to this implemen-
tation are continuing.

There are several important directions in which the JMatch
language could be usefully extended. An exhaustiveness
analysis for switch statements andelse disjunctions would
make it easier to reason about program correctness. Auto-
matic elimination of tests that are redundant in a particular
mode might improve performance. And support for iterators
with removal would be useful.
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A Translating JMatch to Javayield

The translation from JMatch to Javayield consists of several syntax-
directed functions that are mutually inductively defined. In the
following, let f range over formulas andp range over patterns;s
ranges over Javayield statements,w–z range over variables, andU
ranges over sets of variables. The output of each of the translations
is a sequence of Javayield statements.

• S[[s]] is a Javayield statement that is equivalent to the JMatch
statements. It is the identity for statements that do not contain
special JMatch features.

• F [[f ]]Us is the translation of a formula. It is a sequence of
Javayield statements that solve the formulaf and execute the
statements for each solution found. The argumentU is the
set of unknowns to be solved for.

• Ms[[p]]Uxs andMp[[p]]Uxs are the pattern-matching forms
of the pattern translation.Ms andMp give the semantic-
equality and pointer-equality semantics, respectively. Each
produces a sequence of statements that solve the formulap =
x, wherex is a known variable containing the value to match
p against. For each solution the output code executess with
the unknowns inU given satisfying assignments.

• P[[p]]Uws is a pattern translation that solves for the value of
the pattern and its unknowns without a value to match against.
The output code executess for every solution, where the un-
knowns inU are assigned to produce that value forp and the
variablew is assigned the value of the patternp.

• D[[d]] gives the translation of JMatch iterators. It takes a
JMatch method mode declaration and produces a correspond-
ing Java iterator class.

• E [[e]] andC[[e]] together give the translation of aniterate ex-
pression.E translates theiterate expression into an equiva-
lent Java iterator;C generates the container class for the result
values.

Letµf andµp be the set of variables declared in the formulaf or
patternp, respectively. Letϕf andϕp be the set of fields accessed
in the formulaf or patternp, respectively. Let variablesy denote
fresh variables, andl denote fresh statement labels.

A.1 Statement translations

S[[foreach (f) s]] = F [[f ]](µf)(S[[s]])

S[[if (f) s1 else s2]] =
boolean y = true;
F [[f ]](µf)(y = false; S[[s1]]);
if (y) S[[s2]]

S[[cond
−−−→
(fi) si else s]] =

S[[if (f1) s1 else if (f2) s2 else if . . . else s]]

S[[switch (e) {
−−−−−−−−−−−−−−−→
case pi where fi : si default : s}]] =

Object y = e;
S[[ if (y = p1 && f1) s1

else if (y = p2 && f2) s2

. . .
else s ]]
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A.2 Formula translations
Formulas are assumed to be in canonical form.

F [[f1 && f2]]Us =
F [[f1]](U ∩ µf1)(F [[f2]](U \ µf1)s)

F [[f1||f2]]Us = F [[f1]]Us ; F [[f2]]Us

F [[f1 else f2]]Us =
boolean y = true;
F [[f1]]U({y = false; s; })
if (y) F [[f2]]Us

F [[p1 = p2]]Us =
Object y;
P[[p1]](U ∩ µp1)y(Ms[[p2]](U \ µp1)ys)

F [[p1 == p2]]Us =
Object y;
P[[p1]](U ∩ µp1)y(Mp[[p2]](U \ µp1)ys)

F [[p1 ! = p2]]Us =
Object y1, y2;
P[[p1]](U ∩ µp1)y1(P[[p2]](U \ µp1)y2({if (y1 ! = y2) s}))

F [[p1 < p2]]Us =
τ1 y1; τ2 y2;
P[[p1]](U ∩ µp1)y1(P[[p2]](U \ µp1)y2({if (y1 < y2) s}))

whereτ1 andτ2 are the types ofp1 andp2, respectively, and< can
be replaced with<=, >= and>.

F [[single (f)]]Us = l : {F [[f ]]U({s; break l; })}

F [[f
−−−−−−−−−−−−−−−−−−−−−−−→
trap (τi ti) { si; resume (fi); }

−−−−→
catchj ]]Us =

int y = 0;
−−−−−−−−→
τi ti = null;

try {

F [[y = 0 && f ||
−−−−−−−−→
y = i && fi]]Us

}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
trap (τi yi) {y = i; ti = yi; resume continue; }

−−−−→
catchj

A.3 Pattern translations
An expression with no unknowns can be evaluated directly:

Ms[[p]]∅xs = {Tx y=p; if (x.equals(y)) s}

Mp[[p]]∅xs = {Tx y=p; if (x == y) s}

P[[p]]∅ws = {w=p; s}

Wildcards require no work and bind no variables:

M[[_]]∅xs = s

If a variablew of typeTw is matched against a value inx of type
Tx, a runtime check is introduced ifTw is not a supertype ofTx:

M[[w]]{w}xs = if (x instanceof Tw) {Tw w=(Tw)x; s}

Otherwise, the value can be assigned directly.

If a type T is matched against a value inx of type Tx, a runtime
check is introduced ifT is not a supertype ofTx:

Mp[[T ]]∅xs = if (x instanceof T ) s

Otherwise, the statements can be executed directly.

Mp[[p1 as p2]]Uxs =
Mp[[p1]](U ∩ µp1)x(Mp[[p2]](U \ µp1)xs)

Mp[[τ.m(−→pi )]]Uxs =
Mp[[τ y as y.m(−→pi )]](U ∪ {τ y})xs

Mp[[single(p)]]Uxs = l : {Mp[[p]]Ux({s; break l; })}

P[[single(p)]]Uws = l : {P[[p]]Uw({s; break l; })}

Built-in operators such as+ and [ ] support pattern matching.
For brevity, the semantic-equality pattern-matching semantics have
been omitted.

Mp[[e[p]]]Uxs =
Object[ ] ya = e;
for (int yi = 0; yi < ya.length; yi++){

if (x==ya[yi]) Mp[[p]]Uyis
}

P[[e[p]]]Uws =
Object[ ] ya = e;
for (int yi = 0; yi < ya.length; yi++){

w = ya[yi];
Mp[[p]]Uyis

}

Mp[[-p]]Uxs =
τ y =-x;
Mp[[p]]Uys

whereτ is the type ofp and “-” can be replaced with “+” and “~”.

P[[-p]]Uws =
P[[p]]Uw({w =-w; s})

where “-” can be replaced with “+” and “~”.

For brevity only the semantics for additive patterns are shown. The
semantics for other arithmetic patterns follow analogously.

Mp[[p1 + p2]]Uxs =
τ1 y1; τ2 y2;
P[[p1]](U ∩ µp1)y1({y2 = x− y1;Mp[[p2]](U \ µp1)y2s})

whereτ1 andτ2 are the types ofp1 andp2, respectively.

P[[p1 + p2]]Uws =
τ1 y1; τ2 y2;
P[[p1]](U ∩ µp1)y1(P[[p2]](U − µp1)y2({w = y1 + y2; s}))

whereτ1 andτ2 are the types ofp1 andp2, respectively.

A.4 Expression translations

For simplicity, the checkpointing portion of the translation is elided.

C[[iterate c(f)]] =
class c {
−−−→τi xi;

}

where(−−→τi xi) = µf .
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E [[iterate c(f)]] =
new jmatch.runtime.Iterator() {
−−−→
τi x′

i;
protected Object pack() {

c result = new c();
−−−−−−−−−−−−−−−→
result.xi = this.x′

i;
return result;

}

protected boolean peek() {
−−−→τi xi;

F [[f ]](µf){
−−−−−→
x′

i = xi; yield; }
return false;

}

protected boolean findHandler() {
// body filled in during translation from Javayield

}

}

where(−−→τi xi) = µf andx′
1, . . . , x

′
n are fresh variables.

This translation refers to the framework class
jmatch.runtime.Iterator that contains code common to
all JMatch iterators. The code for this class is given in Appendix B.

A.5 Methods
Translation of method bodies defined as formulas is based on the
F translation. Each time a solution is found to the unknowns of
a backward mode, it is saved and control is yielded to the calling
context.

D[[boolean p(−−→τi xi) iterates(U) (f)]] =
class p$U extends jmatch.runtime.Iterator {
−−−→
τui $i; // unknown result values
−−−−→τki xki ; // these store the known values

p$U(−−−−→τki xki) {
−−−−−−−−−−→
this.xki = xki ; }

public boolean peek() {
−−−−→τui xui ;

F [[f ]]U({
−−−−−−−−−−−→
this.$i = xui ; yield; })

return false;
}

protected boolean findHandler() {
// body filled in during translation from Javayield

}

}

where{~xki} = U are known and{~xui} = {~xi} \ U are unknown.

D[[boolean p(−−→τi xi) returns() (f)]] =
boolean p(−−→τi xi) {
F [[f ]](µf)(return true; )
return false;

}
Correspondingly, a call to a predicate method in the forward mode
is translated by solving for the arguments and performing the call
for each set of arguments obtained:

F [[p(p1, . . . , pn)]]Us =
P[[pa1 ]]U1ya1(
P[[pa2 ]]U2ya2(
. . .
P[[pan ]]Unyan(
if(p(y1, . . . , yn)) s)

where: {1, . . . , n} = {a1, . . . , an}
V1 = U, Vi = Vi−1 \ µpai−1 , Ui = Vi ∩ µpai (1 < i ≤ m)

A call to a predicate method in a backward mode is translated as a
loop that uses the iterator implemented by this method body:

F [[p0.f(p1, . . . , pn)]]Us =
P[[pa1 ]]U1ya1(
P[[pa2 ]]U2ya2(
. . .
P[[pam ]]Umyam(
jmatch.runtime.Iterator I =

new p$M(y′1, . . . , y
′
m);

Throwable e = null;

while
I,e
〈τ1,...,τr〉 (I.advance()) {

M[[pb1 ]]U
′
1(I.$1)(

M[[pb2 ]]U
′
2(I.$2)(

. . .
M[[pbk ]]U ′

k(I.$k)(s) . . .))
}

if (e instanceof τ ′1) throw (τ ′1)e;
if (e instanceof τ ′2) throw (τ ′2)e;
. . .
if (e instanceof τ ′t) throw (τ ′t)e;
if (e ! = null) throw e; ) . . .))

where: {0, . . . , n} = {a1, . . . , am, b1, . . . , bk}
{τ1, . . . , τr} are the interrupts handled by the iterator
{τ ′1, . . . , τ ′t} are the trap exceptions thrown by the iterator
[y′1, . . . , y

′
m] = [y0, . . . , yn] ∩ {ya1 , . . . , yam}

V1 = U, Vi = Vi−1 \ µpai−1 , Ui = Vi ∩ µpai (1 < i ≤ m)
V ′

1 = Vm \ µpam , V ′
i = V ′

i−1 \ µpbi−1 , U ′
i = V ′

i ∩ µpbi , (1 <
i ≤ k)

The n + 1 patterns to be evaluated are divided into those that
are in a known position in the mode selected (indicesa1, . . . , am)
and those that are not (b1, . . . , bk). The former are solved directly,
as much in a left-to-right order as possible; the latter are matched
using the results provided by the iteratorp$M that implements the
predicate method. The intersection of a list and a set is a new list
whose elements are a set intersection but preserve the original order.
The translation of pattern method invocations is similar.

The translation above includes code and annotations used for
interrupt and trap exception dispatch. In the final translation out-
put, the body of the while loop will save intoe any trap exceptions
thrown byI and break out of the loop. Thus, to facilitate the trans-
lation ofraise statements in the final translation to Java, thewhile

loop is annotated with the variableI that contains the iterator ob-
ject, the variablee that is to store the trap exceptions, and the set of
interrupts supported by the iterator.
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B Iterator Framework Class
The translations foriterate expressions in Appendix A.4 and methods in Appendix A.5 refer to the following class that contains code
common to all JMatch iterators.

package jmatch.runtime;

public abstract class Iterator {

protected boolean advanced; // Whether the iterator has advanced via a hasNext() call.

protected boolean haveNext; // The cached result of hasNext().

protected boolean removeSupported;

protected Throwable thrown; // The exception that needs to be handled.

protected Object raised; // The interrupt that needs to be handled.

public int $state$;

public int $yieldpt$;

public int $resumept$;

public Iterator() {

this.raised = this.thrown = null;

advanced = false;

}

public boolean hasNext() {

if (advanced) return haveNext;

if (removeSupported) checkpoint();

advanced = true;

return haveNext = advance();

}

public Object next() {

if (advanced ? !hasNext : !advance()) throw new java.util.NoSuchElementException();

advanced = false;

return pack();

}

public void remove() {

if (!removeSupported) throw new UnsupportedOperationException();

if (advanced) { advanced = false; restoreState(); }

Throwable t = trap(new jmatch.runtime.Remove());

if (t instanceof RuntimeException) throw (RuntimeException)t;

if (t != null) throw new jmatch.runtime.TrapException(t);

}

public boolean advance() {

try {

return peek();

} catch (RuntimeException e) {

throw e;

} catch (Throwable t) {

throw new jmatch.runtime.Error(t);

}

}

/** Handles the given trap and returns any resulting exception. */

public Throwable trap(Object trap) {

if (trap == null) return new NullPointerException();

raised = trap; thrown = null;

try {

if (!findHandler()) {

raised = null;

return new jmatch.runtime.Error("unhandled trap: " + trap);

}

peek();

} catch (Throwable t) {

return t;

}

}
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/** Packs the iterator’s output data into a single object. */

protected Object pack() { return null; }

/**

* Advances the iterator state. Returns true iff there is a next element. Throws any unhandled

* exceptions.

*/

protected abstract boolean peek() throws Throwable;

/**

* Sets up the internal state of the iterator to handle the interrupt in "raised" or

* the exception in "thrown". Returns true iff an appropriate handler was found.

*/

protected abstract boolean findHandler();

protected void checkpoint() { ... }

protected void restoreState() { ... }

}

C Translating Javayield to Java

The form of the output of this translation is shown in Figure 6. Table 1 gives the inputs and outputs of the translation function. The final Java
translation of an iterator bodys is obtained by evaluating

(n, s′, h, L) = T [[s]]({})1{b = 0, c = 0, try = unit, rb = 0, rc = 0, handler = (λτ.(ε, ε, 0))}.

The resulting statementss′ become part of the body of thepeek method, whereas the statementsh become part of the body of the
findHandler method:

public boolean peek() {

while (true) {

try {

switch ($state$) {

case 0: s′

}

} catch (Throwable $t$) {

$thrown$ = $t$;

if (!findHandler()) throw $t$;

continue;

} } }

public boolean findHandler() {

while (true) {

switch ($state$) {

h
default:

$state$ = $yieldpt$;

return false;

} } }

This translation is different from what is implemented in the JMatch compiler. The prototype implementation includes a few optimizations,
including an importanttail-yield optimization needed for good asymptotic performance [LM05]. A simplified version of the translation is
provided here to illustrate the semantics of Javayield.

Statement sequencing:
T [[s1; s2]]jsnr =

let
(n1, s

′
1, h1, L1) = T [[s1]]({$state$ = n; continue;})(n + 1)r

(n2, s
′
2, h2, L2) = T [[s2]]jsn1r

in
(n2, s′1

case n: s′2,
h1; h2, n :: L)

end
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Inputs:
Javayield The Javayield statement to translate.

Java Java code to be inserted after the translation of the Javayield statement.
int The next unused case label.

{b : int, The case label targets for unlabeledbreak statements. For simplicity,
we omit the treatment of labeledbreaks andcontinues.

c : int, The case label targets for unlabeledcontinue statements.
try : int + unit, The case label for the innermost try block containing the Javayield state-

ment being translated.
rb : int, The case label target forresume break statements.
rc : int, The case label target forresume continue statements.

handler : κ → String × String × int} A function for finding the handler for araised interrupt. It maps the
interrupt type to:

• the name of the variable holding the iterator that will handle the
interrupt,

• the name of the variable to which any resulting trap exceptions
should be assigned, and

• the case label to which control should be transferred if a trap excep-
tion is thrown.

Outputs:
int The next unused case label.

Java The translated Javayield statement with the Java code applied. This is the
main output of the translation.

Java A series of Java statements to be included in the body for the
findHandler() method.

int list The set of case labels used to translate the top-level block in the given
Javayield statement.

Table 1: The signature of the Javayield translation function.

If :
T [[if (e) s1 else s2]]jsr =

let
(n1, s

′
1, h1, L1) = T [[s1]]({$state$ = n + 1; continue;})(n + 2)r

(n2, s
′
2, h2, L2) = T [[s2]]({$state$ = n + 1; continue;})n1r

in
(n2, if (e) {$state$ = n; continue; }

s′2
case n: s′1

case n + 1: js,

h1; h2, [n, n + 1] · L1 · L2)
end

Branching:
T [[break]]jsnr = (n,{$state$ = #b r; continue;}, ε, [ ])
T [[continue]]jsnr = (n,{$state$ = #c r; continue;}, ε, [ ])

Return:
T [[return]]jsnr =

(n + 2, case n: $yieldpt$ = $state$ = n + 1;
return true;

case n + 1: return false;,
ε, [n, n + 1])
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Yield:
T [[yield]]jsnr =

(n + 2, case n: $yieldpt$ = $state$ = n + 1;
return true;

case n + 1: js,
ε, [n, n + 1])

Raise:
T [[raise e]]jsnr =

let
(p, t, n′) = (#handler r)τe

in
(n, if ((t = p.trap(e)) != null) { $state$ = n′; continue; }

js,
ε, [ ])

end

Try :
T [[try {s} catch (τ1 x1) {s1} catch (τ2 x2) {s2}...catch (τk xk) {sk}

catch (trap τk+1 xk+1) {sk+1} catch (trap τk+2 xk+2) {sk+2}...catch (trap τm xm) {sm}

trap (τm+1 xm+1) {sm+1} trap (τm+2 xm+2) {sm+2}...trap (τp xp) {sp}]]jsnr =
let

fall through =
case t of unit⇒ {return false;}

| int i ⇒ {$state$ = i; continue;}

end
(n′, s′, h, L) = T [[s]]({$state$ = n + p + 2; continue;})(n + p + 3)(r[try 7→ n])
(n1, s

′
1, h1, L1) = T [[s1]]({$state$ = n + 1; return true;})n′(r[rb 7→ n + p + 2][rc 7→ n])

(n2, s
′
2, h2, L2) = T [[s2]]({$state$ = n + 1; return true;})n1(r[rb 7→ n + p + 2][rc 7→ n])

. . .
(np, s′p, hp, Lp) = T [[sp]]({$state$ = n + 1; return true;})np−1(r[rb 7→ n + p + 2][rc 7→ n])

in
(np, case n: s′

case n + 1: $state$ = n + p + 2; continue;

case n + 2: τ1 x1 = (τ1) $thrown$; s′1
case n + 3: τ2 x2 = (τ2) $thrown$; s′2

...
case n + m + 1: τm xm = (τm) $thrown$; s′m
case n + m + 2: τm+1 xm+1 = (τm+1) $signal$; s′m+1

case n + m + 3: τm+2 xm+2 = (τm+2) $signal$; s′m+2

...
case n + p + 1: τp xp = (τp) $signal$; s′p
case n + p + 2: js,

h; h1; . . . ; hp;
case n:

case n + 1:
case L: if ($thrown$ instanceof τ1) $state$ = n + 2;

else if ($thrown$ instanceof τ2) $state$ = n + 3;
else ...if ($thrown$ instanceof τm) $state$ = n + m + 1;
else if ($signal$ instanceof τm+1) $state$ = n + m + 2;
else ...if ($signal$ instanceof τp) $state$ = n + p + 1;
else fall through
return true;,

[n + 2, n + 3, . . . , n + k + 1] · L1 · · · · · Lp)
end
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Resume:
T [[resume yield]]jsnr = (n,{$state$ = $yieldpt$; return true;}, ε, [ ])

ForR ∈ {break, continue, yield}:
T [[resume R trap (τ1 x1) {s1}...trap (τk xk) {sk}]]jsnr =

let
fall through =

case #try r of unit ⇒ {return false;}

| int i ⇒ {$state$ = i; continue;}

end
set resumept =

case R of yield ⇒ {$resumept$ = $yieldpt$;}

| ⇒ ε
end

set state =
case R of break ⇒ {$state$ = #rb r;}
| continue⇒ {$state$ = #rc r;}
| yield⇒ {$state$ = $resumept$;}

end
(n1, s

′
1, h1, L1) = T [[s1]]ε(n + k + 2)r

(n2, s
′
2, h2, L2) = T [[s2]]εn1r

. . .
(nk, s′k, hk, Lk) = T [[sk]]εnk−1r

in
(nk, case n: set resumept

$yieldpt$ = $state$ = n + 1;
return true;

case n + 1: set state
continue;

case n + 2: τ1 x1 = (τ1) $signal$; s′1
case n + 3: τ2 x2 = (τ2) $signal$; s′2

...
case n + k + 1: τk xk = (τk) $signal$; s′k,

h1; . . . ; hk;
case n + 1: if ($signal$ instanceof τ1) $state$ = n + 2;

else if ($signal$ instanceof τ2) $state$ = n + 3;
else ...if ($signal$ instanceof τk) $state$ = n + k + 1;
else fall through
return true;,

[n, n + 2, . . . , n + k + 1] · L1 · · · · · Lk)
end

Loops:
T [[do s while e]]jsnr =

let
(n′, s′, h, L) = T [[s]]({$state$ = n + 1; continue;})(n + 3)(r[b 7→ n][c 7→ n + 1])

in
(n′, case n: s′

case n + 1: if (e) { $state$ = n; continue; }

case n + 2: js,
h, [n, n + 1, n + 2] · L)

end
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T [[for (s1; e; s2) s3]]jsnr =
let

(n′, s′3, h, L) = T [[s3]]({$state$ = n + 2; continue;})(n + 4)(r[b 7→ n + 3][c 7→ n + 2])
in

(n2, s1

case n: if (!e) { $state$ = n + 3; continue; }

case n + 1: s′3
case n + 2: s2; $state$ = n; continue;

case n + 3: s′c,
h, [n, n + 1, n + 2, n + 3] · L)

end

T [[while (e) s]]jsnr =
let

(n′, s′, h, L) = T [[s]]({$state$ = n; continue;})(n + 2)(r[b 7→ n + 1][c 7→ n])
in

(n′, case n: if (!e) { $state$ = n + 1; continue; }

s′

case n + 1: jc,
h, [n, n + 1] · L)

end

T [[whilep,t
〈τ1,...,τk〉

(e) s]]jsnr =

let
fall through =

case t of unit ⇒ {return false;}

| int i ⇒ {$state$ = i;}
end

h′ = λτ. if τ ∈ {~τi} then (p, t, n + 2) else (#handler r)τ
r′ = r[b 7→ n + 2][c 7→ n][try 7→ n][handler 7→ h′]
(n′, s′, h, L) = T [[s]]({$state$ = n; continue;})(n + 3)r′

in
(n′, case n: if (!e) { $state$ = n + 2; continue; }

s′

case n + 1: if ((t = p.trap($signal$)) == null) {

$state$ = $yieldpt$;

return true;

}

case n + 2: s2,
h;

case n:
case L: if ($signal$ instanceof τ1

|| $signal$ instanceof τ2

|| ...
|| $signal$ instanceof τk) $state$ = n + 1;

else fall through
continue;,

[n + 1, n + 2])
end
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