
Appears in the SIGGRAPH 2013 Proceedings.

Modular Flux Transfer: Efficient Rendering of
High-Resolution Volumes with Repeated Structures

Shuang Zhao Miloš Hašan Ravi Ramamoorthi Kavita Bala
Cornell University Autodesk University of California, Berkeley Cornell University

Figure 1: We introduce a modular flux transfer (MFT) framework to approximate high-order scatterings in extremely complex volumes.
Left: a scene containing a purple tablecloth with 2009×3300 yarn crossings represented by an anisotropic volume consisting of 1.06×1013

effective voxels. Center: a 5× zoomed version of the left image, illustrating the complexity of the cloth volume. Right: a 25× zoomed version.

Abstract

The highest fidelity images to date of complex materials like cloth
use extremely high-resolution volumetric models. However, ren-
dering such complex volumetric media is expensive, with brute-
force path tracing often the only viable solution. Fortunately, com-
mon volumetric materials (fabrics, finished wood, synthesized solid
textures) are structured, with repeated patterns approximated by
tiling a small number of exemplar blocks. In this paper, we in-
troduce a precomputation-based rendering approach for such volu-
metric media with repeated structures based on a modular transfer
formulation. We model each exemplar block as a voxel grid and
precompute voxel-to-voxel, patch-to-patch, and patch-to-voxel flux
transfer matrices. At render time, when blocks are tiled to produce
a high-resolution volume, we accurately compute low-order scat-
tering, with modular flux transfer used to approximate higher-order
scattering. We achieve speedups of up to 12× over path tracing on
extremely complex volumes, with minimal loss of quality. In ad-
dition, we demonstrate that our approach outperforms photon map-
ping on these materials.

CR Categories: I.3.7 [Computing Methodologies]: Computer
Graphics—Three-Dimensional Graphics and Realism

Keywords: rendering, precomputation, textiles

Links: DL PDF WEB

1 Introduction

High-quality rendering of complex materials increasingly uses vol-
umetric data, such as the high-resolution micro-CT cloth models
developed by Zhao et al. [2011; 2012]. However, rendering opti-
cally dense volumetric media is challenging for multiple reasons:
their high resolution (with voxel sizes of a few microns), the com-
plex occlusion in the medium, and the anisotropic phase functions
that influence light scattering. Moreover, computation is domi-
nated by multiple scattering within long light paths (5-100 scat-
tering events), especially when the single-scattering albedo is high.
This leads to an undesirable situation, where rendering brighter col-
ored materials becomes substantially more expensive. To date, pure
Monte Carlo path tracing has proven the only reliable method for
rendering such materials, but so far has been too slow for wide-
spread use: tens to hundreds of core hours are required to produce
the images in [Zhao et al. 2011].

Our goal is to significantly improve upon this situation; the ap-
proach we take is based on the following insights. First, compli-
cated volumetric media like cloth often contain repetitive building
blocks, such as yarn crossings. This suggests the possibility of pre-
computing light transport in these blocks, and modularly combining
them into a complex volume: we are inspired by [Loos et al. 2011]
who introduced a similar idea for approximating indirect lighting in
blocked scenes. Second, in dense media with high albedos, such as
white or bright-colored fabrics, high-order multiple scattering is the
most expensive component and contributes significantly to overall
appearance [Moon et al. 2008; Jakob et al. 2010]. This suggests
that speedup is most likely to be achieved by accelerating the com-
putation of the extremely expensive, but lower-frequency multiple
scattering. A similar approach is common for subsurface scattering,
but diffusion approximations do not easily apply to the complex
volumetric media we are interested in, since they are often based
on assumptions of isotropy, homogeneity, and flat boundaries.

The key challenge to a scalable solution is high dimensionality. In
the most general case, light transport is a linear operator that maps
emitted radiance into final radiance. The radiance on the boundary
of a volume is a function of position and direction: a 4-dimensional
light field. Worse yet, a precomputed approach seems to require
the 8-dimensional linear mapping between two such light fields.
Our key insight is that we can handle the curse of dimensionality

1

http://doi.acm.org/10.1145/2461912.2461938
http://portal.acm.org/ft_gateway.cfm?id=2461938&type=pdf
http://www.cs.cornell.edu/projects/ctcloth/

Appears in the SIGGRAPH 2013 Proceedings.

inherent in this problem by slightly modifying the long light paths,
while keeping the short light paths intact. This way we make the
problem tractable while maintaining accuracy.

We use these insights to develop a precomputation-based method
for rendering volumetric media with repeated structures. Our algo-
rithm separates low-order and high-order scattering, and modularly
precomputes the latter. We model the volumetric medium as a grid
of voxelized blocks. While a full volume may consist of millions
of blocks, there are only a few (tens or hundreds) unique exemplar
blocks required to synthesize it [Zhao et al. 2012]. We precompute
the voxel-to-voxel, patch-to-patch, and patch-to-voxel flux transfer
matrices for each of these exemplar blocks. At render time, we
modularly stitch together light transport using the precomputed
matrices to efficiently compute higher-order scattering. Our
contributions include:

• A new formulation for the efficient and tractable rendering of
anisotropic volumes by exploiting modularity, and avoiding
the curse of dimensionality.

• A Monte Carlo matrix inversion based algorithm to make our
approach tractable for very large volumes with millions of
blocks, each with thousands of voxels.

• Results demonstrated on a variety of highly complicated vol-
umes, with a focus on cloth (Figures 1, 14, and 15), but gener-
alizing to non-cloth synthesized volumes (Figure 16) as well.

We show that this approach can, in many cases, accelerate render-
ing over path tracing by an order of magnitude. It also significantly
outperforms techniques like photon mapping on these media. While
the previous research on highly complex measured volumetric ma-
terials generated significant interest, it was too expensive in prac-
tice. We believe that our method, which runs fast enough on a single
server with relatively low memory requirements, will make these
materials usable in demanding industry applications including inte-
rior design and digital effects.

2 Related Work

Volumetric path tracing. Solution of the radiative transfer equa-
tion (RTE) by Monte Carlo methods was first introduced to com-
puter graphics by Kajiya and von Herzen [1984], and has since
frequently been used to render participating media such as clouds
or fog. More recently, volumetric path tracing has also been ap-
plied to the rendering of fabrics. Jakob et al. [2010] introduced
an anisotropic version of the RTE with several desirable properties
of reciprocity and energy conservation, and the microflake phase
function, especially well suited for cloth rendering.

Zhao et al. [2011] measured the volume densities of cloth samples
using micro-CT scanning, which are then rendered using the mi-
croflake model. While requiring slow rendering times, this work
shows that high-quality microgeometry makes a significant visual
difference. In follow-up work, Zhao et al. [2012] synthesized larger
patterns from micro-CT data with trillions of effective voxels, mak-
ing rendering even more expensive. Bidirectional lightcuts [Wal-
ter et al. 2012] decreases the noise in volumetric path tracing, but
achieves efficiency gains only under complex illumination for such
data.

Diffusion approximations. For many materials, expensive Monte
Carlo rendering of volumetric light transport can be effectively ap-
proximated by cheaper methods. Jensen et al. [2001] introduce a
dipole model to graphics using diffusion theory for rendering sub-
surface scattering materials. However, this work uses the homoge-
neous isotropic assumption, in addition to assuming a semi-infinite
flat slab geometry; all of these assumptions are false for fabrics.
Donner and Jensen [2007] remove the flat slab assumption by plac-
ing multiple-scattering point sources along a light ray through the
medium; the problem in applying this idea to fabrics is that the flu-
ence distribution created by a point source inside cloth is far from

symmetric. The layered subsurface scattering approach of Don-
ner and Jensen [2005] is also modular, but only handles flat layers.
D’Eon [2011] introduces a more accurate modification of diffusion
theory, but it does not easily apply to our volumes with strong het-
erogeneity and anisotropic scattering.

An alternative to analytic point source derivations is to solve the
diffusion equation by finite differences [Wang et al. 2008] or finite
elements [Arbree et al. 2011]. These methods only apply to slowly-
changing isotropic media with a flat refractive boundary. The work
by Jakob et al. [2010] also introduces an extended diffusion ap-
proximation for anisotropic media, but this does not easily apply
to fabrics, which would require billions of simple finite elements.
In contrast, our method’s complex “elements” (blocks) contain a
sizable portion of the cloth with a significant number of scattering
events. In general, volumes containing fully anisotropic scattering
from fibers, empty space, shadowing and interreflections defy an
analytic approach.

Methods approximating higher bounces. Several existing so-
lutions share our approach of splitting out the first few path seg-
ments, and then looking up a radiance approximation. Volu-
metric photon mapping [Jensen and Christensen 1998], also ex-
tended to anisotropic scattering from blond hair by Moon and
Marschner [2006], approximates radiance by using density estima-
tion after a few Monte Carlo bounces. The problem with density
estimation for rendering high-resolution microgeometries is that to
get enough photons of all necessary orientations and path lengths,
the radius of lookup has to be orders of magnitude larger than the
underlying microgeometry, thus being locally inaccurate. Photon
beams and the beam radiance estimate [Jarosz et al. 2011] can be
very useful in optically thin media; however, the mean free path in
cloth is a few microns, so the usable length of a beam would likely
become much smaller in our case.

The follow-up works by Moon et al. [2007; 2008], and the related
hair rendering approach of Zinke et al. [2008], are also based on us-
ing approximate radiance after several path-traced bounces. How-
ever, these methods do not take advantage of the modularity from
repeated structures, and may not be scalable to the complexity of
our volumes. Schroeder et al [2011] render fabrics by replacing
actual microgeometry for higher bounces by randomly selected and
oriented fibers; however, the required path lengths remain the same,
and the evaluation of the model is also quite expensive.

Precomputed approaches. Modular radiance transfer [Loos et al.
2011] was recently introduced for diffuse indirect illumination for
blocked interiors often found in computer games, and targeted at
real-time performance. The key idea is that light needs to be prop-
agated from a surface to a block boundary, then within blocks, and
finally back to a surface. We take significant inspiration from this
approach, and show how to derive a modular formulation in the
domain of high-quality volume rendering.

The Lumislice approach [Xu et al. 2001] precomputes scattering
within a yarn of cloth, and produces convincing results for fab-
rics with thick yarns, but does not easily extend to fabrics mod-
eled at the fiber level, or strong anisotropic highlights. Lensch
et al. [2003] precompute heterogeneous subsurface scattering for
a mesh, and compress the transport matrices using a local-global
decomposition. A similar approach could be useful to further com-
press the precomputed transfer matrices in our method. Premože
et al. [2004] proposed an approach to compute multiple scatter-
ing with a “light attenuation volume” precomputed for each light
source. This method focuses on thin media like fog and cannot
capture highly anisotropic scattering.

Radiosity approaches. Several techniques (like [Xu et al. 1990;
Arnaldi et al. 1994; Lewis and Fournier 1996]) share the idea of
partitioning complex scenes into smaller ones (which is related to
our modular transfer approach) but apply only to surface-based ren-
dering. Furthermore, stochastic radiosity [Bekaert 1999] is highly

2

Appears in the SIGGRAPH 2013 Proceedings.

10 20 30 40 50 60

maximum path length

e
n

e
rg

y

10 20 30 40 50 60
maximum path length

e
st

im
a
to

r
v
a
ri

a
n

ce

Figure 2: The increase in the total energy of an image, and the cor-
responding increase in the variance of a Monte Carlo path tracer,
as a function of the maximum number of scattering events (with
number of samples held constant). The data is measured on our felt
scene (top of Figure 14), where the green single-scattering albedo
has been set to 0.99.

related to our Monte Carlo matrix inversion, but focuses on avoid-
ing the O(n2) cost of the form factor matrix, while we crucially
need to eliminate even the O(n) cost per voxel.

Other methods. Rushmeier and Torrance [1987] integrated vol-
ume scattering in thin participating media into a radiosity frame-
work. This technique formulates light transport using finite ele-
ments, related to our approach for a single block, but is not modu-
lar and does not scale to high-resolution volumes since block-level
precomputation is impossible. Narasimhan et al. [2003] derived a
general formula to solve the RTE. Their formula, however, applies
only to homogeneous participating media and thus cannot be used
to solve our problem. Fattal [2009] presented an approach based
on the Discrete Ordinates Method to solve the RTE approximately.
This technique is able to render heterogeneous materials like mar-
ble, but is not efficient enough to handle volumes with trillions of
voxels.

Path formulation of volume rendering. A powerful path formula-
tion of the rendering equation was introduced by Veach [1997], and
extended by Pauly et al. [2000] to volumetric media. The intensity
of a pixel is expressed as an integral over all light paths in the scene
passing through this pixel.

I =

∫
Ω

f(x̄) dµ(x̄). (1)

Here µ is a measure on the path space Ω =
⋃

l≥1 Ωl, and Ωl is the
space of paths with l segments, x̄ = x0x1 . . .xl, such that x0 is
the camera position, x1 is the surface point or volumetric scattering
location directly visible through the pixel, xl is on a light source
and x2, . . . ,xl−1 are any light bounce points in the scene.

The contribution f(x̄) of any single path x̄ = x0x1 . . .xl is
the product of a pixel weight term W (x0←x1), a light emis-
sion term Le(xl−1←xl), geometry terms G(xk↔xk+1) cor-
responding to each segment of the path, and material terms
M(xk−1←xk←xk+1) corresponding to every interior vertex. Ge-
ometry terms contain exponential extinction (inside volumes) and
1/r2 falloff when necessary. Note also that cosine terms are in-
cluded in G for surface but not volume events. In the case of vol-
umetric media, the material terms contain a (possibly anisotropic)
phase function evaluation:

M(x,ω1,ω2) = α(x)σt(x,ω1) p(x,ω1,ω2) (2)

We assume the albedo α(x) is not directionally dependent. The
material term is reciprocal, though the phase function is gen-
erally not; as detailed by Jakob et al. [2010], the phase func-
tion observes the slightly more involved reciprocity relationship
σt(x,ω1) p(x,ω1,ω2) = σt(x,ω2) p(x,ω2,ω1). We use the mi-
croflake phase function [Jakob et al. 2010; Zhao et al. 2011], which
satisfies this relationship, in addition to other desirable properties.

x̄ a light path (sequence of vertices)
µ(x̄) measure on path space (product of surface and vol-

ume measures on vertices)
f(x̄) product of geometry and material terms along path,

pixel weight (for camera vertices) and light emis-
sion (for light vertices)

G(x1↔x2) geometry term (contains 1/r2 falloff when neces-
sary, volume extinction, and cosine terms for sur-
face, but not volume vertices)

M(x,ω1,ω2) material term: a product of the phase function
p(x,ω1,ω2), the single-scattering albedo α(x),
and the extinction coefficient σt(x,ω1)

Bi block: a grid of voxels
Vi voxel: at precomputation level, not data level
Ni non-empty subset of voxel Vi
|Ni| volume of Ni

Pi patch: an oriented voxel face on the shared interface
between two blocks

flip(i) flip operator on set of patch indices
Q a permutation matrix encoding flip(i)

T vv
i , T vp

i , voxel-to-voxel, voxel-to-patch, patch-to-voxel,
T pv
i , T pp

i and patch-to-patch transfer matrices for block Bi

T̃ vv , T̃ vp, global completions of transfer matrices
T̃ pv , T̃ pp

Φs source flux: integral of illumination up to first scat-
tering event

Φgt ground truth multiple-scattered flux
Φm multiple-scattered flux (approximation of Φgt com-

puted by modular transfer)

Table 1: Summary of notation; bold letters indicate vectors.

We use this path formulation to describe our method. Note that
path integrals can also be easily applied to paths that do not have
endpoints on the camera or light source.

3 Overview

In this section, we describe the main computational difficulty in ren-
dering complex, optically thick media with anisotropic phase func-
tions. We introduce two key simplifications to make the problem
tractable: isotropy and diffuser events in long light paths. Based
on these simplifications, we introduce a modular approach, which
precomputes the light transport within blocks of the volume. The
modularity is inspired by Loos et al.’s [2011] approach. However,
there are differences in the main challenges that need to be handled.
While Loos et al.’s main challenge is compression of the transport
into very small vectors of coefficients that allow for real-time eval-
uation, we instead need to deal with extremely large resolution and
long light paths.

Key challenge: long paths. The volumetric path integral can be
naturally evaluated by Monte Carlo sampling of paths with known
probabilities, which leads to a standard volumetric path tracer. The
problem with this approach is its slow performance, especially for
materials with highly complicated structures, such as data-driven
cloth, where creating each path vertex executes a Woodcock track-
ing procedure to importance-sample extinction, and has a signifi-
cant cost of many non-cached memory accesses. Furthermore, a
significant amount of energy (and resulting variance) is in paths
with many segments. This problem is most significant for bright
colors, which have a high single-scattering albedo in one or more
color channels. Figure 2 shows the increase in energy in a cloth
sample if albedo is high, and the corresponding increase in vari-
ance in a path tracing solution.

Diffuser and isotropy events. Shorter paths can be handled by
pure path tracing; like some previous approaches, we apply our
approximations to longer paths. The key difference is that we
take advantage of the repeated structure in the volume to pre-

3

Appears in the SIGGRAPH 2013 Proceedings.

(a) diffuser event (b) isotropy event

cosine
approximation

isotropic
approximation

actual
phase function

Figure 3: Inserting isotropy events and diffuser events into paths
makes the underlying path integral separable, at the cost of intro-
ducing some error. If these events are inserted into paths of suffi-
cient length, the error will be close to imperceptible.

compute a large number of paths, driving the effective number of
paths significantly higher (and the noise much lower) than any non-
precomputed approach.

One key challenge is to split paths into precomputed and runtime
components without introducing high-dimensional (and therefore
expensive) intermediate data representations. The coupled nature
of the material terms along a path through an anisotropic volume
makes any attempt to split the problem into subproblems (some of
which could be precomputed) seem hopeless.

We propose modifying the problem by inserting diffuser events
and isotropy events into some paths (see Figure 3). We found
that setting the phase function on a small number of vertices of
a long path to be isotropic creates very little error in the final im-
age, which makes precomputation feasible. Therefore, we insert
isotropy events on the k-th vertex from the camera and the last ver-
tex before the light. Also, we insert zero or more diffuser events
in between. These modifications provide significant advantages by
making the underlying path integrals separable, in the sense that
they can be factored into a product of integrals “before” and “after”
the isotropy/diffuser event. This allows us to split the paths into
components that are precomputed offline, and computed at runtime.
In other words, this enables us to use flux instead of light fields as
the quantity being transported, addressing the curse of dimension-
ality, and making the problem tractable. These assumptions are
later used in Sections 5.1 and 5.3. In comparison, modular radiance
transfer [Loos et al. 2011] uses low-resolution lightfields at block
boundaries. We considered coarse directional discretizations, but
found their storage to be too expensive: for example, 32 directional
bins would inflate our precomputed data 1,024 times.

We show that, if done for paths of sufficient length, these modifi-
cations have little effect on the accuracy of the solution. In fact,
as our results show, the accuracy of our results is higher with a
practical number of samples than with methods like path tracing or
photon mapping. While theoretically these approaches do not make
any isotropy or diffuser approximations, in practice they need many
more samples to achieve a quality as high as our results (Section
6.2).

voxels interfaces

P1

P3

P2

voxel-to-voxel
transfer

patch-to-patch
transfer

voxel-to-patch
transfer

Figure 4: Definitions of voxels, interfaces, patches, and three
types of precomputed transfers, each of which corresponds to a ma-
trix. Note that patch-to-voxel transport is the transpose of voxel-to-
patch.

source flux
evaluation

voxel-to-patch
transfer

multiple
patch-to-patch

transfers

final
gathering

patch-to-voxel
transfer

voxel-to-voxel
transfer

Figure 5: The three phases of the runtime stage of our pipeline.
We use dashed lines to indicate sub-paths with length ≥ 1 which
can contain multiple scattering events.

3.1 Definitions

Blocks. We divide the volume into a number of equal-sized blocks.
Our algorithm makes no assumption about the definition of a block.
For our woven fabric data, a block is defined to be of size about 0.5
mm (approximately a yarn crossing, as suggested in [Zhao et al.
2012]). We treat the volume as consisting of a 2-dimensional grid
of blocks without loss of generality; the grid could also easily be
3-dimensional, but in our results there is always only one block
across the thickness of the volume). The full volume can be made
of millions of blocks, but due to repeating structures, only a small
number (up to one or two hundreds in our case) of the blocks are
unique, and we call them exemplar blocks.

Voxels. Each block is divided into n voxels V1, V2, . . . , Vn, which
provide the resolution at which precomputed transfer occurs. Note
that these voxels are separate from the underlying volume’s rep-
resentation, which can have much higher resolution; i.e., within
each precomputed transfer voxel, there can still be many under-
lying data voxels. We define the non-empty subset of voxel Vi as
Ni := {x ∈ Ṽi | σt(x,ω) > 0 for some ω} where Ṽi ⊂ R3

denotes the 3D space contained in voxel Vi.

Interface. We define an interface to be the rectangular shared
boundary between two neighboring blocks. The final volume can
contain millions of distinct interfaces.

Patches. We define patches P1, P2, . . . to be oriented faces of vox-
els on an interface. Oriented-ness means that each patch can be
associated with a normal vector n(Pi), pointing into one of the
neighboring blocks of the underlying interface. Patches will serve
the purpose of connecting the transfer between blocks.

Figure 4 shows a flatland visualization of a volume consisting of
three blocks, each of which is divided into 3 × 5 voxels. In this
example, there are two interfaces and twelve patches. This corre-
sponds directly to our actual algorithm, except the real implemen-
tation is in three dimensions, uses millions of blocks, and is option-
ally warped by a shell-map [Porumbescu et al. 2005] (to bend the
volume into a curved shape).

Figure 6: Cropped 2D slices of the flux field of a synthetic volume
with three blocks where the interfaces are indicated with blue ar-
rows: (left) path-traced reference; (center) applying precomputed
voxel-to-voxel transfer within blocks leads to darkening, because
paths crossing the boundaries are missing; (right) adding transfer
across boundaries addresses this energy loss.

4

Appears in the SIGGRAPH 2013 Proceedings.

Figure 7: Visualizations of precomputed patch-to-patch (left),
voxel-to-voxel (center), and patch-to-voxel (right) transfer matri-
ces of a twill block with 470 patches and 1239 non-empty voxels.

3.2 Modular Transfer Pipeline

The pipeline of our system consists of the following stages:

Transfer matrix precomputation. In this stage, we pre-compute
the light transfer for a set of exemplar blocks which can later be
used to assemble full high-resolution volumes using various tech-
niques including [Zhao et al. 2012]. In particular, we compute
three types of transfers, voxel-to-voxel, voxel-to-patch, and patch-
to-patch, which will be introduced in Section 4.

Runtime evaluation. At the runtime stage, the pipeline is split into
the following three phases (see Figure 5):

1. Source flux evaluation. We first evaluate the amount of atten-
uated light arriving at voxels directly from a light source. This
can be treated as the first scattering event, and will serve as the
source term for the light propagation of precomputed transfer
matrices. Note that, conceptually, the source flux includes the
scattering event (more precisely, the material term).

2. Modular transfer. Given the source flux, we apply our
precomputed transfer to obtain multiple-scattered flux. The
voxel-to-voxel transfer captures light transfer within individ-
ual blocks, and accounts for the bulk of short range transport.
Further, voxel-to-patch and patch-to-patch transfers provide
longer-range transport that crosses block boundaries. All of
these transfers are introduced in Section 5.2.

3. Final gathering. Finally, we run a standard path tracing algo-
rithm accelerated by looking up the previously computed scat-
tered flux field after k scattering events (paths with less than
k scatterings are computed by explicit path tracing). More
details are available in Section 5.3.

4 Precomputation

In this section, we describe the precomputation stage of our
pipeline. Given a block divided into n voxels, we define three kinds
of transfer matrices: voxel-to-voxel, voxel-to-patch, and patch-to-
patch. Below we give precise definitions of the elements of the
transfer matrices, and describe a Monte Carlo particle tracing algo-
rithm to compute them.

Voxel-to-voxel. The voxel-to-voxel transfer matrix T vv handles
most (but not all) of the light transport: because of the short mean
free path in optically dense materials, most transport is local, even
though it requires many scattering events. Figure 6 compares the
amount of transport contained within the voxel-to-voxel transfer
versus the other transfer modes.

The element (i, j) of T vv is defined as a path integral, where the
endpoints of the paths are in Ni and Nj , the non-empty subsets of

Algorithm 1 A particle tracing based method for computing the
voxel-to-voxel transfer matrix T vv given a block B.

1: T vv ← 0
2: for i = 1 to numVoxels do . Loop over all voxels
3: for t = 1 to m do
4: sample a ray (x,ω) with x ∈ Ni and ω ∈ S2

5: w ← 4π|Ni| . Weight initialization
6: loop
7: sample s (with Woodcock tracking) according to

p(s) = σt(x + sω,ω) exp

(
−
∫ s

0

σt(x + s′ω,ω) ds′
)

8: x′ ← x + sω . Get a scattering event at x′

9: if x′ ∈ B then
10: find the voxel j that contains x′

11: else
12: break . Terminate the path
13: end if
14: T vv(i, j)← T vv(i, j) + w/σt(x

′,ω)
. Deposit energy

15: w ← w · α(x′) . Update the weight
16: sample direction ω′ according to material term at x′

17: (x,ω)← (x′,ω′) . Continue the path
18: end loop
19: end for
20: end for
21: T vv ← T vv/m

Vi and Vj :

T vv(i, j) =

∫
Ω(Ni,Nj)

f(x̄) dµ(x̄). (3)

Here Ω(Ni, Nj) means the set of paths (with one or more seg-
ments) with endpoints inNi andNj , respectively (see the left block
in Figure 4). This definition implies that T vv is symmetric. The use
of the non-empty subsets Ni instead of the full voxels Vi is impor-
tant for several reasons. It leads to sparser matrices (and thus less
storage). Furthermore, defining the path integral this way helps us
to compute total flux within non-empty regions of a voxel, which
approximates the radiance values at scattering events better (since
these never occur in empty regions).

We compute T vv using Monte Carlo particle tracing, as shown in
Algorithm 1. For each voxel Vi, we trace m paths. For each of
the m paths we trace the path through the block, with appropriate
importance sampling, and deposit values into the appropriate (i, j)
entry in the transport matrix Tvv . This is done inside the loop on
lines 6-18. Each path terminates when it exits the volume (line 12).
At each vertex, energy is deposited (line 14) and then multiplied
by the albedo (line 15). Note that the deposition is divided by the
probability density of the initial particle generation, captured in the
initial weight w = |Ni| for position choice (where |Ni| is the vol-
ume of the non-empty voxel subset), and 4π for direction choice.
The value is also divided by the value of σt at the deposition ver-
tex, because it figures in the sampling probability density but not
in the path integral we want to compute. Since x′ is chosen by
importance-sampling σt, it holds that σt(x

′,ω) > 0 in line 14,
preventing any division-by-zero issues.

In summary, the particle tracing importance-samples all terms along
a path other than the initial probability, albedo terms, and the final
division by σt, which are exactly the terms that occur explicitly in
the weighting.

Voxel-to-patch. As shown in the right block of Figure 4, the voxel-
to-patch transfer matrix T vp is similarly defined as the integral over

5

Appears in the SIGGRAPH 2013 Proceedings.

(a) (b) (c)Φs T̃ vvΦs T̃ vpΦs

Figure 8: Light paths captured by (a) source flux Φs; (b) Φs with
voxel-to-voxel transfer applied; (c) Φs with voxel-to-patch transfer
applied.

paths between a voxel Vi and patch Pj :

T vp(i, j) =

∫
Ω(Ni,Pj)

f(x̄) dµ(x̄), (4)

where Ω(Ni, Pj) is again naturally defined as the set of paths with
endpoints in Ni and Pj . Importantly, the non-empty voxel subset
Ni is used again. Note the contribution f(x̄) includes a cosine term
on the path vertex that lies on the patch. This is because geometry
terms include a cosine on surfaces, and the patch is treated as a
surface. Note that patch-to-voxel transport T pv is the transpose of
T vp, so no separate definition is required for it. These matrices are
normally not square.

The computation of T pv is handled similarly to T vv by volumetric
particle tracing, except the origin of a particle is chosen on a patch,
and its direction is chosen by importance-sampling the cosine of the
angle from the patch normal.

Patch-to-patch. The patch-to-patch transfer matrix T pp is defined
as the integral over paths between patches Pi and Pj (see the center
block in Figure 4):

T pp(i, j) =

∫
Ω(Pi,Pj)

f(x̄) dµ(x̄). (5)

Computing T pp is analogous to T vp, except deposition occurs at
other patches instead of voxels. Matrix T pp is also symmetric.

Summary of precomputation. Assume we have a set of exemplar
blocks which can be assembled to construct very large volumes.
For the i-th exemplar block, we precompute and store the voxel-to-
voxel, voxel-to-patch, and patch-to-patch matrices T vv

i , T vp
i , and

T pp
i . Figure 7 visualizes the transfer matrices of a block of twill

fabric with shiny red fibers.

5 Runtime Evaluation

In this section, we describe the three phases of the runtime stage
of our pipeline: source flux evaluation, modular transfer, and fi-
nal gathering. The first and third stages are based on standard ap-
proaches, while the core complexity lies in the second phase, where
the precomputed transfers are applied.

5.1 Source Flux Evaluation

The runtime of our pipeline starts by evaluating the source flux vec-
tor Φs, which is the amount of single-scattered light arriving at
voxels directly from the set of direct light sources (see Figure 8a).
Denote the set of emissive surfaces C. Let Ω1(Ni, C) be the set
of unscattered paths (i.e., direct single-segment connections) from
voxel subsets Ni to the set of emissive surfaces C. Denote these
single-segment paths by x̄ = x0x1. The elements of Φs can now
be defined as:

Φs(i) =

∫
Ω1(Ni,C)

∫
S2

M(x0,ω,
−−−→x0x1)f(x̄) dω dµ(x̄). (6)

block 1 block 2

block 3 block 4

T vv
1 T vv

2

T vv
3 T vv

4

T vv
1

T vv
2

T vv
3

T vv
4

T̃ vv =

Figure 9: Formation of block-diagonal matrix T̃ vv for a volume
with four blocks.

An important detail is that, intuitively, we are including in Φs light
that scattered once. More precisely, we include the material term
in the definition, integrating it over all directions. This is the first
application of an isotropy event: since we do not know ω, the di-
rection light will take after this scattering event, we integrate over
all such directions.

We compute Φs by particle tracing, and store it as a sparse vector
where the total number of non-zero entries never exceeds the num-
ber of traced particles, and is usually much smaller than the number
of voxels. The noise in Φs is not a problem, because the applica-
tion of the precomputed transfer matrices multiplies the effective
number of paths by a large number.

5.2 Modular Transfer

The goal of the modular transfer phase of the pipeline is to use
the precomputed matrices to turn source flux into multiple-scattered
flux, which can then be simply looked up by the final gather phase
of the pipeline. We define the ground-truth multiple-scattered flux
Φgt as:

Φgt(i) =

∫
Ω2+(Ni,C)

f(x̄) dµ(x̄). (7)

Here, by
∫

Ω2+(Ni,C)
we mean paths with 2 or more segments. Our

goal is to compute an approximate multiple-scattered flux Φm by
application of precomputed transfer, such that Φm ≈ Φgt. An im-
portant detail is that Φm, unlike Φs, does not conceptually contain
the scattering event, i.e. the material term; it will be the responsi-
bility of the final gather phase to include it.

For the final volume (where each block is the copy of an exemplar),
let the transfer matrices of the i-th block be T vv

i , T vp
i and T pp

i .
We define the global completions of these matrices, which operate
on a global indexing of all voxels and patches in the volume, and
denote them by T̃ vv , T̃ vp, and T̃ pp. If we assign contiguous indices
to voxels belonging to the same block and patches belonging to
the same interface, then T̃ vv and T̃ pp become block diagonal (see
Figure 9). In other words, this is simply an imaginary stacking of
the precomputed matrices for different exemplar blocks, so that we
have only one large block-diagonal matrix for each transfer type.

Given the source flux vector Φs, the first step of the modular trans-
fer phase is the application of voxel-to-voxel transfer. This is ac-
complished simply by computing the matrix-vector multiplication
T̃ vvΦs (see Figure 8b).

However, the voxel-to-voxel matrix T̃ vv only encodes transfer over
paths that do not cross block interfaces, as shown in Figure 8b. To
compensate for this omission, we need to propagate the flux to the
block interface, “cross” to the other side of the interface to enter
the neighboring block, and then propagate further to voxels in that
block.

More precisely, we transfer voxel fluxes into patch fluxes by an ap-
plication of T̃ vp (see Figure 8c). Now the patch flux on patch Pi

describes the amount of light it receives. Let flip(i) denote the in-
dex of the patch that overlaps with i but with the opposite normal
direction (so patches Pi and Pflip(i) always belong to immediately
neighboring blocks). This flip operator can be written as a permu-
tation matrix Q on the set of global patch indices. To propagate

6

Appears in the SIGGRAPH 2013 Proceedings.

block 1 block 2 block 3 block 1 block 2 block 3

block 1 block 2 block 3 block 1 block 2 block 3

(a) T̃ vpΦs (b) Ψ0 := QT̃ vpΦs

(c) T̃ ppΨ0 (d) QT̃ ppΨ0

Figure 10: An example of patch flux propagation. The scene con-
tains 3 blocks and 4 patches defined over 2 interfaces. Assume that
all voxels have zero flux except for one in block 1 marked with the
red square. Then (a) shows the patch flux received by the right patch
in block 1; (b) applying flip operator Q gives patch flux emitted by
the left patch in block 2; (c) multiplying by T̃ pp gives the patch flux
received by both patches in block 2; (d) applying another Q yields
the patch flux emitted by the two patches in blocks 1 and 3.

the patch flux received by Pi, we make the opposite patch Pflip(i)

to emit the same amount of energy into the neighboring block (see
Figure 10ab): this is an application of a diffuser event, which pre-
vents the need to store a directionally-dependent function on each
patch; instead it suffices to compute a scalar quantity, the patch
flux. Note that this assumption is crucial to making our approach
tractable since storing directional variation would prohibitively in-
crease the amount of storage. However, this still does not account
for all light paths. To allow the energy to go further, we need to
apply QT̃ pp multiple times, to go from patch to patch across entire
blocks (see Figure 10cd). This will add the light traversing block
boundaries for longer range transport. This eventually leads to the
correct expression for computing the multiple-scattered flux:

Φm = T̃ vvΦs + T̃ pv

(
∞∑
a=0

(
QT̃ pp

)a)
QT̃ vpΦs. (8)

Let U := I − QT̃ pp. Rewriting the infinite series in (8) using the
Neumann series yields:

Φm = T̃ vvΦs + T̃ pvU−1QT̃ vpΦs, (9)

which can be computed as follows. First, we compute by solving a
linear system the patch flux:

Φp := U−1QT̃ vpΦs, (10)

which equals the amount of energy emitted by each patch i con-
tributed by light paths going across one or more interfaces and
flipping across the interface. Then we evaluate (9) using Φm =
T̃ vvΦs + T̃ pvΦp.

To compute Equation (10), we need to solve a large linear system
UΦp = QT̃ vpΦs. Since U is usually asymmetric (because of
the flip operator Q), conjugate gradient based algorithms cannot be
applied here. Instead, we introduce two methods corresponding to
finite element and Monte Carlo approaches to solve this system.

Jacobi Iteration. We can simply truncate the Neumann series,
which results in Jacobi iteration. We start with Ψ(0) = QT̃ vpΦs,
and in the t-th iteration, we compute Ψ(t+1) = QT̃ ppΨ(t) +Ψ(0).
After a few iterations, set Φp = Ψ(t). Note that neither T̃ pp nor
Q needs to be formed explicitly; instead, for any given vector v,
T̃ ppv can be computed by performing the patch-to-patch transfer
on each block, and Qv can be obtained by permuting v’s elements.

Algorithm 2 Random walk estimating Φls(i).

1: (j, s)← sampleRow(T̃ pv, i) . Jump from voxel to patch
2: loop
3: j ← flip(j) . Flip the patch
4: Let q be the stop probability
5: if rand() < q then . Russian roulette
6: s← s/(1− q)
7: break
8: end if
9: (j, v)← sampleRow(T̃ pp, j) . Jump to another patch

10: s← sv/q . Update the throughput
11: end loop
12: (i′, v)← sampleRow(T̃ vp, j) . Final jump to voxel
13: return Φs(i′) sv

Monte Carlo Matrix Inversion. Although Jacobi iteration works
adequately, it may take many iterations to converge and requires
storing the full vector Ψ(t) (whose size equals the total number of
patches), which can be very expensive: the tablecloth in Figure 1,
for example, contains many millions of block interfaces, each with
hundreds of patches. To make our method truly scalable to very
large models, we implemented a Monte Carlo method based on
[Forsythe and Leibler 1950], which does not require the storage
of Φp explicitly. Let

Φls := T̃ pvΦp = T̃ pvU−1QT̃ vpΦs, (11)

which is the component of the multiple-scattered flux that requires
solving a linear system (i.e., summing a Neumann series). If el-
ements of Φls can be efficiently estimated, we can then compute
Equation (9) with Φm = T̃ vvΦs + Φls.

To do this, we define a random walk whose expected value is the i-
th element of Φls. The random walk intuitively traces a “path”,
whose “vertices” are discrete states corresponding to voxel and
patch indices, instead of actual scattering points, and its “edges”
consist of multi-vertex jumps precomputed within the transfer ma-
trix elements.

The algorithm conceptually starts at voxel Vi, and immediately
transitions into the j1-th patch, with a discrete probability distribu-
tion proportional to the i-th row of T̃ pv . Then, a series of transitions
between patches with indices j1, j2, j3, . . . is made with probabil-
ities proportional to a corresponding element of the matrix T̃ pp. A
Russian roulette approach is used to eventually terminate this loop,
making a final transition to a voxel index i′, with probability based
on the corresponding row of T̃ vp. At this point, the i′-th element of
source flux Φs is queried and scaled by terms accumulated along
the path. It is not difficult to see that the expected value of this
process is precisely the matrix expression containing the Neumann
series that we are interested in computing. Note that each transition
in this random walk can capture many light scattering events which
are expensive to simulate exactly.

Algorithm 2 describes the random walk in more detail. In the algo-
rithm, we use a sampleRow(A, i) function, which returns the index
of an element sampled from the i-th row of matrix A, with a prob-
ability proportional to the element’s value. It also returns the value
of the element, divided by the probability of choosing it. All the
rendered results in Section 6 are generated using this algorithm.

5.3 Final Gathering

Given the discretized flux field inside the volume computed by the
modular transfer, we can now render it efficiently. We perform a
standard Monte Carlo path tracing algorithm with explicit direct il-
lumination. However, when handling the k-th scattering event on a
light path at location x, we replace the phase function by a uniform
isotropic one. This is the second time we insert an isotropy event to

7

Appears in the SIGGRAPH 2013 Proceedings.

2 3 5 8 10 15 20 25 30
0

1

2

3

4

5

6

7

Number of Accurate Scatterings

L2 E
rr

or

Felt (PT)
Felt (MFT)
Twill (PT)
Twill (MFT)

Figure 11: Convergence experiment: we rendered multiple results
with our method (solid lines) and path tracing with terminating the
path after k scatterings (dashed lines) using varying k values and
computed their L2 error (plotted as log(1 + y) for error y). Note
that the graphs do not converge to zero, because there is Monte
Carlo noise in both images being compared.

obtain a separable approximation to the path integral. This lets us
stop the recursive process and approximate the indirect illumination
at point x as Φm(i)/(4π|Ni|) where Φm(i) is the stored multiple-
scattered flux value computed by the modular transfer. The final
gather computes all paths with less than k scattering events using
standard path tracing.

Finally, we choose the value of k as follows. As shown in Fig-
ure 11, for a range of materials, we produced multiple renderings
with changing k values. The results indicate that for materials with
random structures, such as felt, a k value of 2 or 3 is sufficient. For
structured materials with parallel shiny fibers (such as the twill),
a value of k = 6 produces high quality results, and our approach
still converges much faster than path tracing. Therefore, we picked
k = 6 for all our results.

6 Results

In this section, we first demonstrate the performance of our tech-
nique by comparing flux fields computed by our method, path trac-
ing, and photon mapping. Afterwards we show renderings for a
range of materials created with our method.

6.1 Flux Field Visualizations

Figure 12 shows the multiple-scattered flux fields obtained by path
tracing and our technique. The entire volume contains over one mil-
lion blocks, and in this figure we show 2D slices across 20 of them.
The top of the figure shows the reference Φgt generated by trac-
ing thousands of paths for each non-empty voxel, while the bottom
shows the approximate Φm generated by tracing 50 million parti-
cles for the source flux and solving the modular transfer described
in Section 5.2. Our result matches the ground truth well.

6.2 Photon Mapping Comparisons

Figure 13 shows detail renderings generated by path tracing (the
ground truth), our technique (MFT), and photon mapping. Here we

Figure 12: 2D slices of flux fields in non-empty voxels computed
with path-tracing (top) and MFT (bottom).

(a) (b)

(c) (d)

Figure 13: Images rendered with (a) standard path tracing in 1.3
hours; (b) MFT in 12 minutes (with 10M particles traced); (c) vol-
ume photon mapping in 20 minutes (with 100M photons stored); (d)
volume photon mapping in 1 hour (with a billion photons stored).

use k = 3, i.e. three path-traced events precede the MFT or pho-
ton map lookup. The entire scene is a single sheet of cloth with
over one million blocks, of which a small patch (containing 0.24%
of all traced particles) is shown. Figure 13b is obtained by trac-
ing 10 million particles for the source flux. Our method is much
faster than path tracing while providing good accuracy. Figure 13c
is generated with photon mapping with 100 million particles. Ar-
tifacts result from the stored photon density being insufficient to
capture the yarn-level structures. In Figure 13d, we show a photon
mapping result using one billion photons.

6.3 Rendered Results

Next, we show renderings of a variety of volumetric appearance
models of fabrics created with techniques introduced by Zhao et
al. [2011; 2012]. Such models often consist of trillions of micron-
resolution (effective) voxels, making them very challenging to ren-
der. In our experiments, we focus on demonstrating our technique
over such highly complex volumetric models. We used a simple
lighting configuration and compared our results with those created
by volume path tracing. We implemented our system based on the
Mitsuba physically based renderer [Jakob 2010], and ran all our ex-
periments on an Intel server equipped with four Xeon X7560 eight-
core CPUs.

Precomputation. When precomputing the transfer matrices re-
quired by MFT, for each material, we pick a resolution such that
every exemplar block has around 1000 non-empty voxels and 500
patches. As previously mentioned, the choice of this resolution
does not depend on the actual data resolution of the underlying vol-
ume. In our case, each cloth block (representing one yarn crossing)
contains about one million data voxels, and the final volumes in
Figures 14 and 15 contain 2.5×1011 and 1.4×1012 effective vox-
els, respectively. Precomputation of a block takes roughly 4 hours,
and storing the transfer matrices (as OpenEXR images) takes about
20MB. We distributed the precomputation tasks to Amazon Elastic
Compute Cloud (EC2) by using between 25 and 80 c1.xlarge
instances, where processing each exemplar block costs 2 USD.
Note that the matrices are purely determined by material proper-
ties. Thus, after a one-time precomputation, we can use MFT to
accelerate renderings of the material under any lighting condition.
Also, we use the same precomputation, which was performed over
rectangular blocks, when the volume is warped into draped shapes
with shell-mapping (Figures 1, 14 and 15). Furthermore, one set of

8

Appears in the SIGGRAPH 2013 Proceedings.

MFT path tracing path-traced reference

Figure 14: Rendered fabrics in draped configurations: (top) felt; (middle) twill weave; (bottom) velvet. The left column shows results
rendered by our method (MFT). The center column shows two path-traced results: the left half of each image is rendered with fewer paths,
sampled to achieve similar rendering time, but therefore, exhibits higher noise; the right half is rendered with the same number of samples
but terminating all paths after 6 scatterings, showing significant darkening because of the lack of high-order scatterings. The right column
shows path-traced references computed in much longer time. See Table 2 for performance numbers.

Scene Total Exemplar Precomp. Path Length Time Cost Speed
Blocks Blocks Time PT MFT PT MFT Up

Felt 250 000 25 100 44.1 7.4 144 14 10.3×
Twill 250 000 25 100 37.1 7.2 90 10 9.0×
Velvet 250 000 25 100 71.0 7.9 192 15 12.8×

Damask 1 350 000 120 480 65.8 7.2 108 15 7.2×
Wood 256 25 100 17.9 6.3 17 5.6 3.0×

Synthetic 625 25 100 23.6 6.9 6.6 1.6 4.1×

Table 2: Scene statistics. The table shows the number of blocks in
the scene, the number of exemplar blocks, the precomputation time
for all exemplars (in hours), average path length, and rendering
time (in minutes) for path tracing (PT) and our method (MFT). Felt,
twill, and velvet correspond to Figure 14; damask to both designs
in Figure 15; wood and synthetic to Figure 16. The MFT rendering
time includes the portion spent on computing the source flux Φs (by
tracing particles from light sources), which is less than 2 minutes
for all our results. The Monte Carlo matrix inversion step takes less
than 15% of the rendering time for all scenes.

exemplar blocks may be used to synthesize models with very dif-
ferent structures (such as the cloth with different weave patterns in
Figure 1 and both rows of Figure 15), amortizing the precomputa-
tion cost over a very large set of designs.

Single-Colored Fabrics. We first show rendered results for three
types of fabrics (Figure 14) where the single-scattering albedo for
each material stays constant (namely all fibers have identical col-
ors) and equals around 0.975 (for the brightest color channel). Our
method achieved respectively 10.3×, 9.0×, and 12.8× speedup for
these materials. The top row contains renderings for felt, a thick
non-woven fabric with layers of disorganized fibers. The middle
row shows those for a twill fabric, conveying characteristic diago-

nal lines. Unlike felt, this fabric contains well aligned fibers in two
perpendicular directions which create strong anisotropic highlights.
The bottom row exhibits rendered images of velvet with a visible
surface composed of fibers sticking up from the base material, cre-
ating a distinctive grazing-angle highlight. Each of the three results
has 25 precomputed exemplar blocks which can be reused to syn-
thesize the same kind of material in arbitrary sizes. This same data
was also used to produce all the turn-table and zoom sequences in
the accompanying video.

Fabrics with Complex Designs. In addition, we created an exem-
plar database with 120 blocks using the method from [Zhao et al.
2012]. With such a database, fabrics with complicated weave pat-
terns can be constructed through synthesis. Since we precompute
the transfer matrices for each exemplar block, the precomputation
can be reused to render any synthesized cloth. Figures 1, 15 show
renderings with three designs generated with this single database
where our approach speeds up the renderings by 7.2×. A high-
resolution version of the left image in Figure 1 is available as sup-
plementary material, and animated renderings with a moving light
source are included in the video.

More information for images in Figures 14, 15 and 16 are available
in Table 2. The results show that path tracing suffers from very
long light paths because of the volume complexity and high albedo
values. On the other hand, using the MFT method, we terminate
the path after 6 scatterings, which bounds the maximal path length
and yields significant speedups.

Materials Beyond Cloth. Finally, our technique can also be ap-
plied to non-cloth materials, as long as they are formed using a
small set of exemplar blocks. Figure 16 shows two such results. On
the left, we show a piece of finished wood represented with a micro-

9

Appears in the SIGGRAPH 2013 Proceedings.

MFT path-traced reference MFT path-traced reference

Figure 15: Fabrics with two designs (both with 900 × 1500 blocks) rendered under two lighting configurations. All results rendered with
our technique use the same set of precomputed transfer matrices. Performance information is in Table 2, and more designs are available as
supplementary materials.

flake volume based on the data from [Marschner et al. 2005]. The
rendered wood conveys characteristic anisotropic highlights. Our
method captures all these effects while filling in high-order scatter-
ings accurately. On the right, we show a synthetic volume with a
fine, coral-like structure made of a solid texture provided by [Kopf
et al. 2007]. Our result matches the ground truth very well. Al-
though these datasets contain only a few million effective voxels,
and are much less complicated than the cloth volumes, our method
still achieved 3− 4.1× speedup over path tracing.

7 Conclusion and Future Work

In this paper, we introduced a precomputation-based approach to
accelerate renderings of very complex volumetric materials built
from sets of exemplar blocks. These materials are slow to ren-
der using pure Monte Carlo techniques and do not easily allow for
diffusion approximations. Our algorithm separates low-order and
high-order scattering and approximates the latter using a modular
flux transfer framework. Based on the observation that introduc-
ing diffuser and isotropy events to long-enough light paths has little
effect on accuracy, we showed that those paths can be split into
precomputed and runtime components. The former can be evalu-
ated by precomputing voxel-to-voxel, voxel-to-patch, and patch-to-
patch transfers for each exemplar block. The precomputation cost
is amortized over many different lightings, shapes, and designs. An
important component of our solution is a Monte Carlo matrix in-
version method to solve the transfer problem with minimal storage
cost; this means that our method has similar scalability to path trac-
ing, but effectively traces much shorter paths for the same quality.
Our results demonstrate a speed-up of more than an order of mag-
nitude for thick cloths. In addition, the method can be used for non-
cloth materials. We believe our algorithm could be directly used for
high-quality rendering in interior design or movie production.

One limitation of our current work is that we require a new pre-
computation if the exemplar blocks change their optical properties,
such as single-scattering albedo. In the future, we plan to extend
our framework to permit precomputation with material editing. Our
Monte Carlo particle tracing based precomputation stage is quite
expensive, thus further optimizations would be very useful. We
would also like to explore heuristics for choosing the value of k
adaptively, such as ones based on a frequency analysis of the re-
sulting error. Combining our approach with lightcuts [Walter et al.
2012] or other algorithms may be an interesting direction. Finally,

we would like to push our approach to an even larger scale, for
example, rendering a crowd of clothed characters.

Acknowledgements

Funding for this work was provided by NSF IIS grants 1011832,
1115242, 1161645 and 1011919, ONR PECASE grant N00014-
09-1-0741, the Intel Science and Technology Center for Visual
Computing, and equipment and funding from NVIDIA, Adobe and
Pixar.

References

ARBREE, A., WALTER, B., AND BALA, K. 2011. Heterogeneous
subsurface scattering using the finite element method. IEEE
Transactions on Visualization and Computer Graphics 17, 7,
956–969.

ARNALDI, B., PUEYO, X., AND VILAPLANA, J. 1994. On
the division of environments by virtual walls for radiosity com-
putation. In Photorealistic Rendering in Computer Graphics.
Springer, 198–205.

BEKAERT, P. 1999. Hierarchical and stochastic algorithms for
radiosity. PhD thesis, Katholieke Universiteit Leuven.

D’EON, E., AND IRVING, G. 2011. A quantized-diffusion model
for rendering translucent materials. ACM Trans. Graph. 30, 4,
56:1–56:14.

DONNER, C., AND JENSEN, H. W. 2005. Light diffusion in multi-
layered translucent materials. ACM Trans. Graph. 24, 3, 1032–
1039.

DONNER, C., AND JENSEN, H. W. 2007. Rendering translucent
materials using photon diffusion. In Proceedings of the 18th Eu-
rographics conference on Rendering Techniques, Eurographics
Association, 243–251.

FATTAL, R. 2009. Participating media illumination using light
propagation maps. ACM Trans. Graph. 28, 1, 7:1–7:11.

FORSYTHE, G., AND LEIBLER, R. 1950. Matrix inversion by
a monte carlo method. Mathematical Tables and Other Aids to
Computation, 127–129.

10

Appears in the SIGGRAPH 2013 Proceedings.

MFT path-traced reference MFT path-traced reference

Figure 16: Renderings of materials beyond cloth under different lightings: (left) finished wood; (right) synthetic volume. Please see Table 2
for more information.

JAKOB, W., ARBREE, A., MOON, J. T., BALA, K., AND
MARSCHNER, S. 2010. A radiative transfer framework for ren-
dering materials with anisotropic structure. ACM Trans. Graph.
29, 4, 53:1–53:13.

JAKOB, W., 2010. Mitsuba renderer. http://mitsuba-renderer.org.

JAROSZ, W., NOWROUZEZAHRAI, D., SADEGHI, I., AND
JENSEN, H. W. 2011. A comprehensive theory of volumetric
radiance estimation using photon points and beams. ACM Trans.
Graph. 30, 1, 5:1–5:19.

JENSEN, H. W., AND CHRISTENSEN, P. H. 1998. Efficient simu-
lation of light transport in scences with participating media using
photon maps. In Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, ACM, 311–320.

JENSEN, H. W., MARSCHNER, S. R., LEVOY, M., AND HAN-
RAHAN, P. 2001. A practical model for subsurface light trans-
port. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, ACM, 511–518.

KAJIYA, J. T., AND VON HERZEN, B. P. 1984. Ray tracing vol-
ume densities. SIGGRAPH Comput. Graph. 18, 165–174.

KOPF, J., FU, C.-W., COHEN-OR, D., DEUSSEN, O., LISCHIN-
SKI, D., AND WONG, T.-T. 2007. Solid texture synthesis from
2D exemplars. ACM Trans. Graph. 26, 3, 2:1–2:9.

LENSCH, H., GOESELE, M., BEKAERT, P., KAUTZ, J., MAG-
NOR, M., LANG, J., AND SEIDEL, H. 2003. Interactive render-
ing of translucent objects. In Computer Graphics Forum, vol. 22,
195–205.

LEWIS, R. R., AND FOURNIER, A. 1996. Light-driven global
illumination with a wavelet representation of light transport. In
In Seventh Eurographics Workshop on Rendering, Springer, 11–
20.

LOOS, B. J., ANTANI, L., MITCHELL, K., NOWROUZEZAHRAI,
D., JAROSZ, W., AND SLOAN, P.-P. 2011. Modular radiance
transfer. ACM Trans. Graph. 30, 6, 178:1–178:10.

MARSCHNER, S. R., WESTIN, S. H., ARBREE, A., AND MOON,
J. T. 2005. Measuring and modeling the appearance of finished
wood. ACM Trans. Graph. 24, 3, 727–734.

MOON, J. T., AND MARSCHNER, S. R. 2006. Simulating multiple
scattering in hair using a photon mapping approach. ACM Trans.
Graph. 25, 1067–1074.

MOON, J. T., WALTER, B., AND MARSCHNER, S. R. 2007. Ren-
dering discrete random media using precomputed scattering so-
lutions. In Proceedings of the 18th Eurographics conference on
Rendering Techniques, Eurographics Association, 231–242.

MOON, J. T., WALTER, B., AND MARSCHNER, S. 2008. Effi-
cient multiple scattering in hair using spherical harmonics. ACM
Trans. Graph. 27, 3, 31:1–31:7.

NARASIMHAN, S. G., AND NAYAR, S. K. 2003. Shedding light on
the weather. In Proceedings of the 2003 IEEE computer society
conference on Computer vision and pattern recognition, IEEE
Computer Society, 665–672.

PAULY, M., KOLLIG, T., AND KELLER, A. 2000. Metropolis
light transport for participating media. In Proceedings of the
Eurographics Workshop on Rendering Techniques 2000, 11–22.

PORUMBESCU, S. D., BUDGE, B., FENG, L., AND JOY, K. I.
2005. Shell maps. ACM Trans. Graph. 24, 3, 626–633.

PREMOŽE, S., ASHIKHMIN, M., TESSENDORF, J., RAMAMOOR-
THI, R., AND NAYAR, S. 2004. Practical rendering of multi-
ple scattering effects in participating media. In Proceedings of
the Fifteenth Eurographics conference on Rendering Techniques,
Eurographics Association, 363–374.

RUSHMEIER, H. E., AND TORRANCE, K. E. 1987. The zonal
method for calculating light intensities in the presence of a par-
ticipating medium. SIGGRAPH Comput. Graph. 21, 4, 293–302.

SCHRODER, K., KLEIN, R., AND ZINKE, A. 2011. A volumet-
ric approach to predictive rendering of fabrics. Comput. Graph.
Forum 30, 4, 1277–1286.

VEACH, E. 1997. Robust Monte Carlo Methods for Light Transport
Simulation. PhD thesis, Stanford University.

WALTER, B., KHUNGURN, P., AND BALA, K. 2012. Bidirectional
lightcuts. ACM Trans. Graph. 31, 4, 59:1–59:11.

WANG, J., ZHAO, S., TONG, X., LIN, S., LIN, Z., DONG, Y.,
GUO, B., AND SHUM, H.-Y. 2008. Modeling and rendering of
heterogeneous translucent materials using the diffusion equation.
ACM Trans. Graph. 27, 1, 1–18.

XU, H., PENG, Q.-S., AND LIANG, Y.-D. 1990. Accelerated ra-
diosity method for complex environments. Computers & Graph-
ics 14, 1, 65–71.

XU, Y.-Q., CHEN, Y., LIN, S., ZHONG, H., WU, E., GUO, B.,
AND SHUM, H.-Y. 2001. Photorealistic rendering of knitwear
using the lumislice. In Proceedings of the 28th annual confer-
ence on Computer graphics and interactive techniques, ACM,
391–398.

ZHAO, S., JAKOB, W., MARSCHNER, S., AND BALA, K. 2011.
Building volumetric appearance models of fabric using micro CT
imaging. ACM Trans. Graph. 30, 4, 44:1–44:10.

ZHAO, S., JAKOB, W., MARSCHNER, S., AND BALA, K. 2012.
Structure-aware synthesis for predictive woven fabric appear-
ance. ACM Trans. Graph. 31, 4, 75:1–75:10.

ZINKE, A., YUKSEL, C., WEBER, A., AND KEYSER, J. 2008.
Dual scattering approximation for fast multiple scattering in hair.
ACM Trans. Graph. 27, 3, 32:1–32:10.

11

