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Micro-appearance models explicitly model the interaction of light with
microgeometry at the fiber scale to produce realistic appearance. To effec-
tively match them to real fabrics, we introduce a new appearance matching
framework to determine their parameters. Given a micro-appearance model
and photographs of the fabric under many different lighting conditions, we
optimize for parameters that best match the photographs using a method
based on calculating derivatives during rendering. This highly applicable
framework, we believe, is a useful research tool because it simplifies devel-
opment and testing of new models.

Using the framework, we systematically compare several types of micro-
appearance models. We acquired computed microtomography (micro CT)
scans of several fabrics, photographed the fabrics under many view-
ing/illumination conditions, and matched several appearance models to this
data. We compare a new fiber-based light scattering model to the previously
used microflake model. We also compare representing cloth microgeome-
try using volumes derived directly from the micro CT data to using explicit
fibers reconstructed from the volumes. From our comparisons we make the
following conclusions: (1) given a fiber-based scattering model, volume-
and fiber-based microgeometry representations are capable of very similar
quality, and (2) using a fiber-specific scattering model is crucial to good
results as it achieves considerably higher accuracy than prior work.
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1. INTRODUCTION

Appearance models that can reproduce the rich appearance of fab-
ric are important in a wide range of applications including textile
design, product visualization, retail, and entertainment. Yet, pho-
torealistic rendering of fabrics remains very challenging. Recent
research that models fabrics at the scale of fibers [Zhao et al. 2011;
Schröder et al. 2014] has produced the most realistic renderings
to date. By directly modeling the geometric arrangement of fibers,
these methods can reproduce distinctive specular highlights caused
by woven structures, subtle diffuse effects of multiple scattering,
and details like fuzz and flyaway fibers.

These appearance models are instances of an approach we call
micro-appearance models, which combines an explicit model of
a material’s microgeometry with a simple light scattering model.
Previous work has shown that these components together can re-
produce the subtle and complex light-scattering behaviors seen at
larger scales. The approach is also general enough to encompass all
types of textiles, including traditional weaves and knits as well as
non-woven fabrics.

Using micro-appearance models entails answering a number of
questions, which previous work still left open:

—How to represent microgeometry? Microgeometry can either
be represented by volumes (e.g., [Zhao et al. 2011]), or collec-
tions of individual fibers (e.g., [Schröder et al. 2014]). It is un-
clear which approach is better.

—How to model light scattering? Zhao et al. [2011] proposed a
simple microflake phase function, but it does not capture scatter-
ing behavior in grazing configurations correctly. Schröder et al.
[2014] used a scattering function derived from that of hair fibers,
which may handle grazing behaviors better. However, its effec-
tiveness in this regard has never been assessed against measure-
ments.

—How to compute model parameters? Zhao et al. [2011] em-
ploys a simple binary search to fit their model, but it cannot be
generalized to more complicated ones. Most other previous work
specifies parameters manually with the exception of Schröder
et al. [2014] which automatically derives the diffuse color from
cloth photographs. To our knowledge, there has been no general
framework for fitting model parameters.

This paper attempts to answer the above three questions. To do
so, we introduce a number of innovations. To identify the best mi-
crogeometry model, we develop an algorithm that converts a micro
CT scan of cloth fabric to an explicit mesh of the fibers that com-
pose the fabric so that we can compare the effectiveness of the two
approaches. To identify the best light scattering model, we use the
methodology for developing hair scattering function [Marschner
et al. 2003] to develop an improved scattering model for textile
fibers that takes into account reflection from and refraction through
fiber surfaces. To compute the parameters of the model, we develop
an appearance matching framework which takes into account mul-
tiple fabric observations under different lighting conditions. It uses
stochastic gradient descent to optimize the parameters, so it is gen-
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eral enough to fit any parameter with respect to which the partial
derivative of a single path tracing sample can be computed.

These innovations enabled us to systematically evaluate micro-
appearance modeling approaches against one another and against
measurements. In general, we gather ground-truth data in the form
of gonioreflectometric measurements of real cloth samples. The ap-
pearance matching framework uses some of the data to optimize
for parameter values. Performance can then be assessed by com-
paring the rest of the ground-truth data to renderings yielded by
the models and the fitted parameters. We believe that this evalua-
tion procedure is essential to developing and effectively testing new
models. Using the procedure, we provide an extensive evaluation of
the effectiveness of our appearance matching pipeline and the rel-
ative performance of different microgeometry and light scattering
models using six fabrics with very different characteristics.

The conclusions we draw from our investigation are:

(1) A scattering model based on previous models for hair scatter-
ing works much better than the microflake model, especially at
reproducing bright grazing highlights.

(2) In choosing between fiber- and volume-based models for cloth
microgeometry, there is no clear winner: both are capable of
matching measurements when used with the right scattering
model. However, we did find that smooth orientation fields are
important to achieving good results with volume models.

(3) Our system worked well for a number of fabrics, but we also
experienced a number of difficult cases, which point out venues
for improving both the system itself and the light scattering
model.

Our work as a whole comprises a complete and practical ap-
pearance modeling system which we believe is an important step
forward in achieving predictivity and photographic realism for tex-
tiles. It can generate fabric models that capture both far-field re-
flectance properties and near-field fine textures of different types of
textiles as demonstrated in Figure 1.

The system implemented in this paper, however, does not cover
all aspects of fabric appearance. The experiments presented in this
paper focus on light reflected from fabric and do not examine light
transmitted through the fabric. Moreover, our system currently only
handles fabrics with a single yarn type and color. While it can be
readily extended to address these aspects, the extension is not in the
scope of this paper and is left for future work.

2. PREVIOUS WORK

A system to model fabric appearance must specify two compo-
nents: a representation for fabric geometry and a model for how
light scatters from that geometry. Additionally, a practical and com-
plete system should offer a way to infer model parameters from
observations of real cloth samples.

2.1 Representations of Fabric Geometry. In graphics,
three approaches have been proposed to represent fabric geometry.
The first approach is to abstract the fabric to a two-dimensional sur-
face, represented by a mesh or curved surface [Sattler et al. 2003;
Adabala et al. 2003; Irawan and Marschner 2012]. Surfaces can be
quite successful in distant views, but close-up views, especially at
edges and silhouettes, look incorrect because the three-dimensional
structure of yarns and fibers is missing.

The second approach is to use volumetric data. Kajiya and Kay
[1989] pioneered this technique in the context of fur rendering. Xu
et al. used the approach to represent yarns in knitwear [2001]. Zhao
et al. [2011] obtained fabric volumes from micro CT scans of real

(a1) (b1) (c1)

(a2)* (b2) (c2)

Fig. 1. Rendering of a scene with the (a) velvet, (b) silk, and (c) twill
fabric models produced by our pipeline. *The exposure of the (a2) image
was scaled up by 8 times to make the fibers visible. The velvet uses volume-
based microgeometry, and the other two use fiber-based microgeometry.

Table I. Approaches to fabric appearance modeling.
Appearance Geometry model

model Fabric mesh Volume Fiber mesh

BTF [Sattler 03]

BSDF
[Adabala 03]
[Irawan 12]
[Sadeghi 13]

[Zhang 13]

Volumetric [Zhao 11]

Fiber-
based

[Kajiya 89]
[Schröder 11]

This paper

[Schröder 11]*
[Schröder 14]

This paper

*Schröder et al. used the fiber geometry coupled with fiber-based
appearance models to produce ground truth for comparison with
their volumetric geometry representation.

cloth samples and were able to reproduce detailed and irregular ap-
pearance of cloth at an unprecedented level. Schröder et al. [2011]
generated cloth fibers procedurally and converts them to a volumet-
ric representation.
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The third approach is to represent fabric with a collection of dis-
crete fibers, each represented with explicit geometry. While it has
been employed to model materials with much larger fiber-like units
such as a head of hair [Ward et al. 2006] and feathers [Chen et al.
2002], only a few previous works have used it to represent woven
cloth. Zhang et al. [2013] proposed a new variant of subdivision
surfaces that procedurally generates fibers on the fly at the right
level of detail. Schröder et al. [2014] also developed another pro-
cedural model for fiber generation but generated the complete fiber
mesh before rendering.

2.2 Models for Scattering. To model scattering based on
a surface model, a popular option is to employ bidirectional tex-
ture functions (BTFs) [Sattler et al. 2003]. This approach captures
view-dependent appearance by exhaustive sampling, but often suf-
fers from undersampling and shows limited quality at edges and
silhouettes and under grazing illumination.

The second approach, also coupled with the surface approach
to geometry representation, is to use a surface-based BSDF model
coupled with textures. Adabala et al. [2003] generated textures
from weave pattern data and modeled scattering behavior with a
microfacet BSDF. Irawan and Marschner [2012] proposed a pro-
cedural texture model based on weave patterns and a reflectance
model based on the analysis of specular reflection from spun fibers.
Sadhegi et al. [2013] constructed cloth BSDFs from weave patterns
and a yarn scattering model.

The third approach is to specify volumetric appearance based
on scattering particles, as dictated by the radiative transfer equa-
tion (RTE), by specifying the volumetric absorption coefficient,
volumetric scattering coefficient, and a phase function. Zhao et al.
[2011] modeled appearance of cloth with an anisotropic microflake
phase function, the foundation of which was laid by Jakob et al.
[2010].

The last approach employs light scattering models for fibers.
The first of such models was proposed by Kajiya and Kay [1989]
and is capable of reproducing the characteristic sheen in fur and
hair. Most fiber scattering models, including ours, are based on the
work of Marschner et al. [2003], which introduced the bidirectional
curve scattering distribution function (BCSDF) to encapsulate the
far-field appearance of hair fibers. Zinke and Weber [2007] gener-
alized the BCSDF to the bidirectional fiber scattering distribution
function (BFSDF) to make it capable of capturing near-field ap-
pearance, which is subsequently used unmodified by Schröder et al.
[2014]. Schröder et al. [2011] used the BFSDF with fiber-based ge-
ometry and a derived volume-based approximation. However, be-
cause the shift to volume rendering caused changes in appearance,
they had to include special corrections in their volumetric rendering
algorithm.

Table I summarizes the range of approaches to fabric modeling
and situates our work in this space. In particular, we generate fibers
from micro CT scan data instead of creating them procedurally.
Our scattering model is similar to models for yarn scattering used
in surface scattering models [Irawan and Marschner 2012; Sadeghi
et al. 2013] but is adapted to the BCSDF framework, making it
suitable for rendering with explicit fibers.

2.3 Parameter Estimation. For the volume-based cloth
model of Zhao et al. [2011], the authors selected rendering param-
eters for the scanned cloth volumes by binary searching the val-
ues of single parameters in sequence to match statistics of a ref-
erence image of the cloth sample. By contrast, our method recov-
ers all parameters of the fiber scattering model simultaneously, and
compares the rendered cloth to several photographs under different

lighting and viewing conditions. As in our approach, Gkioulekas
et al. [2013] recover the unknown parameters of their scattering
model through stochastic gradient descent. Their method combines
gradient descent and Monte Carlo rendering to recover linear com-
binations of predefined materials from a material dictionary for a
wide range of translucent media. Recently, Schröder et al. [2014]
introduced an image-based technique to reverse engineer physi-
cal fabric samples. Their approach, however, focuses on recover-
ing weave patterns and diffuse yarn colors and requires many other
parameters needed for rendering to be specified manually. Sadeghi
et al. [2013] estimated parameters in two stages. They first deter-
mined their yarn scattering model’s parameters to match to a dense
sample of yarn BSDF measurements, and then they determined pa-
rameters of the yarn curves. Both stages, however, were carried out
manually.

We note that there are two approaches to the number of training
data used for parameter fitting. On one hand, works such as Zhao
et al.’s and ours use a sparse sampling of appearance. Indeed, Zhao
et al. uses one photograph whose pixel values are then averaged
into 3 numbers. We use 16 (as will be discussed in Section 5.2)
and the images are averaged in the same way. On the other hand,
Sadeghi et al.’s and Gkioulekas et al.’s use a dense sampling.1 One
criticism to the sparse sampling approach is that the samples might
not be representative enough to capture all the details of the fabric’s
scattering behaviors. For example, Sadeghi et al. documented that
fabrics exhibit multiple highlights due to weave patterns, and not
including such highlights may lead to incorrect parameter values,
especially lobe widths.

It is instructive to compare our approach to that of Sadeghi et al.
[2013]. Appearance is produced by a combination of microgeome-
try and optical properties, and both methods seek to determine ge-
ometry and scattering properties separately. Sadeghi et al. consider
the yarn as the basic unit, so they begin by measuring the optical
properties of a yarn very accurately and then finish by adjusting the
geometry to match the overall appearance. We consider the fiber as
the basic unit and proceed in the opposite order. We establish geom-
etry first—both the arrangement of fibers within yarns and also the
geometry of yarns in the cloth—using micro CT scanning and then
adjust the scattering properties to match appearance. In a sense, we
rely on detailed microgeometry to give rise to complex structures
in fabric’s scattering behaviors such as multiple highlights and to
compensate for approximated lobe widths values. Encouraged by
the success of Zhao et al. and constrained by the need to render im-
ages during the fitting process, we have taken the approach of fitting
the optical properties to the low-frequency BRDF. As discussed in
Section 7, this approach produced excellent results for many fab-
rics, but there are others where additional training configurations
may be helpful.

2.4 Derivative Estimation. Our appearance matching
framework extends a path tracer to estimate derivatives of images
with respect to parameters. Hašan and Ramamoorthi [2013]
estimate derivatives with respect to the albedos of volumes. Our
method reduces to the same form when applied to estimate deriva-
tives with respect to albedo, but supports other parameters as well.
The operator-theoretic method of Gkioulekas et al. [2013] consid-
ers the full set of rendering parameters of an isotropic volume, but
only obtains derivatives with respect to the coefficients of a convex
linear combination of predefined materials. By comparison, the
approach in Section 5 can individually estimate derivatives with

1Gkioulekas et al. takes only 18 photographs, but each pixel of each photo-
graph is considered a measurement, so the sampling is in fact very dense.
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(Section 6)
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matching
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Fiber model
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(Section 5)

Full appearance
model

Fig. 2. Appearance modeling pipeline.

respect to any rendering parameter that has a differentiable effect
on the samples used to render the image.

2.5 Fiber Generation. Previous works that employ fiber-
based geometry representations generate textile fibers procedurally,
using mathematical models such as that proposed by Sreprateep
and Bohez [2006].

Researchers in the hair modeling community have presented
many works that generate hair fibers from different types of data
such as a single photograph [Chai et al. 2013] (for 2D manipula-
tion), multiple photographs from different views [Paris et al. 2004;
Luo et al. 2013], focus stacks [Jakob et al. 2009], and thermal im-
ages [Herrera et al. 2012]. All the cited works generate hair strands
by tracing particles along a direction field defined by the captured
data. In contrast, we take volumetric data as input and generate
fibers by identifying locations of fiber centers and then connecting
them globally instead of sequentially tracing particles.

Based on recent advances in textile research, Schröder et al.
[2014] proposed a technique to build fiber geometry for woven fab-
rics. Their approach estimates yarn curves using one photograph
taken under uniform lighting and procedurally generates fibers
around them.

Constructing fiber geometry from volumetric data has been well
studied in the neuroscience community for the purpose of under-
standing the brain’s networking. Approaches include tracing parti-
cles through a direction field [Basser et al. 2000], growing a level
set [Parker et al. 2002], and simulating water diffusion in the vol-
ume [Kang and Zhang 2005].

While Shinohara et al. used micro CT images to extract yarn po-
sitions in fabric [2010], we are not aware of any previous works, es-
pecially in the graphics community, that generate cloth fibers from
micro CT images.

3. OVERVIEW

Our appearance modeling pipeline is outlined in Figure 2. Our ap-
pearance matching process takes as input a set of photographs of a
fabric under different lighting and viewing configurations, together
with the corresponding scene geometry, and finds fits for the param-
eters of our new light scattering model. The light scattering model
is described in Section 4. The appearance matching process is in-
troduced in Section 5. The appearance matching process takes in-
put as photographs and fiber microgeometry, the latter of which is
constructed as described in Section 6.

We now describe each part of the pipeline in more detail. First,
in Section 4, we introduce a new light scattering model for textile
fibers. The scattering model has two terms. The first term mod-
els light reflected directly off fiber surfaces, and contains a Fres-
nel term that makes the reflection brighter at grazing angles to ad-
dress the inaccuracy observed in Zhao et al.’s model. The second
term models light transmitted forward through the fibers, account-
ing for the fact that textile fibers are generally translucent. While
the scattering model is conceptually simple, it cannot be fitted us-
ing the simple iterative binary search method described in Zhao
et al. [2011]. Therefore, we introduce a new appearance matching
process in Section 5.

The appearance matching is done using gradient descent op-
timization to find values for the parameters of the scattering
model that achieve the best match between the photographs and
physically-based renderings of the cloth microgeometry model.
Multiple scattering contributes significantly to the renderings (the
majority of the reflected light is due to multiple scattering in most
cases). Thus, the optimization has to account for it. To do so, we ex-
tend our renderer, a Monte Carlo path tracer, to compute derivatives
of the output image with respect to the parameters of the scattering
model. The derivatives are computed as unbiased estimates of the
true derivatives and are used in a stochastic gradient descent opti-
mization method, which converges to a minimum despite the uncer-
tainty in the individual estimates of pixel values and their deriva-
tives (under the condition that the objective function is convex).
Our process is agnostic both to the microgeometry model and to
the scattering model, allowing us to directly compare the abilities
of different models to recover cloth appearance.

A goal of this paper is to study the effectiveness of two repre-
sentations of fabric microgeometry. While previous work has been
able to create micron-scale volumetric representation from micro
CT images of real fabrics, no work has addressed the creation of
fiber mesh representations from such data. To enable direct compar-
ison of the two approaches, we develop an algorithm to construct
fiber meshes from micro CT images in Section 6. The method is
based on identifying fiber centers in slices of micro CT volumes
and connecting them.

Finally, in Section 7 we present the results of our investigation
into fabric appearance models, carried out using the tools devel-
oped in the earlier sections, and draw conclusions about which
methods should be used.

4. FIBER SCATTERING MODEL

In this section, we describe a fiber scattering model, developed with
the goal of addressing the shortcomings of the microflake scatter-
ing function used by Zhao et al. [2011]. Our model builds upon
the considerable research in scattering models for rendering hair
[Marschner et al. 2003; Zinke and Weber 2007; d’Eon et al. 2011].
Like hair, textile fibers are long cylindrical structures made of di-
electric material, so they can be expected to exhibit similar specular
reflection geometry. However, because textile fibers are smaller and
less visible individually, as well as more irregular in cross section,
we use a simpler model than the full hair model.

4.1 Preliminaries. We adopt the radiometry and notation of
[Marschner et al. 2003], with the fiber positioned on the x-axis and
a direction ω represented in spherical coordinates θ and φ such that

ω =

x
y
z

=

 sinθ

cosθ cosφ

cosθ sinφ

 . (1)
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The angle θ is called the longitudinal angle and φ the azimuthal
angle. A fiber scattering model is a function S(ωi,ωo) that denotes
the ratio of the outgoing curve radiance in the direction ωo to the
incoming differential curve irradiance from direction ωi.

Like most hair scattering models, ours is a sum of separable
modes:

S(ωi,ωo) =
k

∑
p=0

Sp(ωi,ωo) =
k

∑
p=0

Mp(θi,θo)Np(θi,φi,φo). (2)

Here, each of the per-mode scattering functions Sp(ωi,ωo) is a
product of a longitudinal function Mp(θi,θo) and an azimuthal
function Np(θi,φi,φo). This separability is a significant conve-
nience for importance sampling. A mode describes a component
of scattered light that survives the same sequence of interactions
with the fiber surface, and is also named after the sequence. For
example, the R mode describes light reflected off the fiber surface,
the TT mode describes light transmitted into the fiber in and then
immediately out, and the TRT mode describes light transmitted into
the fiber and reflected internally once before being transmitted out.

In agreement with previous BSDF models for cloth [Irawan and
Marschner 2012; Sadeghi et al. 2013], informal measurements of
individual fibers suggest an azimuthally uniform R mode and a TT
mode with a single forward scattering lobe. Moreover, the more
detailed TRT mode that appears in hair fibers does not appear to
be important for textile fibers. (See the supplementary material for
evidence.) This motivated us to include only the first two modes in
our model:

S(ωi,ωo) =
MR(θi,θo)

2π
+MT T (θi,θo)NT T (θi,φi,φo). (3)

The two modes are depicted in Figure 3.

fiber

light

θi θi

βR

R mode
color =CR

fiber

light

θi

θi

γT T

βT T

TT mode
color =CT T

Fig. 3. The two modes of our scattering function.

Our model has five parameters that determine the intensities and
widths of the two modes:

— CR: the color of the R mode
— CT T : the color of the TT mode
— βR: the longitudinal width of the R mode
— βT T : the longitudinal width of the TT mode
— γT T : the azimuthal width of the TT mode

We make use of two differently normalized Gaussian-like func-
tions. One is ḡ, a renormalized Gaussian in θ :

ḡ(θ ; µ,σ) =
g(θ ; µ,σ)

G(µ,σ)
(4)

where g(θ ; µ,σ) denotes the Gaussian distribution with mean µ

and standard deviation σ , and G(µ,σ) is a normalization factor
(defined in Appendix A) chosen to satisfy energy conservation.

The other is the von Mises distribution f (also used in [Irawan
and Marschner 2012]), which is the analog of the Gaussian distri-
bution on the circle:

f (φ ; µ,σ) =
σ−2 exp(cos(φ −µ))

2πI0(σ−2)
(5)

where I0(x) is the modified Bessel function of order 0.

4.2 The R Mode. The R mode accounts for light that reflects
specularly from the surface of the fiber. The total amount scattered
into this mode depends on θ due to Fresnel reflection; we model
this dependence using a heuristic formula, since the surface is not
planar and the actual fraction transmitted depends on the cross sec-
tion and surface properties, neither of which we wish to model. We
introduce a parameter CR that specifies the reflectance at θi = 0,
then use Schlick’s approximation to let reflectance increase to 1 as
the incident direction becomes parallel to the fiber:

FR(θi) =CR +(1−CR)(1− cosθi)
5. (6)

In the absence of a particular cross section, we assume that the
reflected light is distributed uniformly in φ , so that

NR(θi,φi,φo) =
1

2π
.

Moreover, it is scattered to a small range of θ that increases with
surface roughness, which we model using the normalized lobe ḡ:

MR(θi,θo) = FR(θi)ḡ(θo;−θi,βR). (7)

Because the values of CR may be different among the red, green,
and blue channels, our model allows reflection from fiber surfaces
to be colored. Although Fresnel’s equations do not predict this, we
deliberately make the reflection colored as we found empirically
that this led to the model being better at reproducing the color of
some fabrics.

4.3 The TT Mode. The TT mode represents light that trans-
mits into the fiber and then out. It is responsible for the remaining
fraction 1−FR(θi) of incoming light. It is colored (via the param-
eter CT T ) to account for light absorbed by colorants in the interior
of the fiber.

As with the R mode, we model the longitudinal spread using a
normalized Gaussian, but since transmitted light is generally fo-
cused forward, we model the dependence on φ using the von Mises
distribution centered at φi +π:

MT T (θi,θo) =CT T (1−FR(θi))ḡ(θo;−θi,βT T ) (8)
NT T (θi,φi,φo) = f (φo;φi +π,γT T ) (9)

where γT T controls the azimuthal width of the forward scattering
peak.

Discussion. The two components of the model together define a
simple but expressive model for scattering from fibers. It can model
rougher fibers like cotton or wool compared to smoother fibers like
nylon or silk by adjusting βR and βT T ; it models the color of fibers
primarily using CT T , and the effects of different cross sections that
produce more or less strongly forward-directed scattering are mod-
eled by adjusting γT T .

4.4 Volumetric Appearance Model. The scattering model
can be adapted into a volumetric appearance model compatible
with the anisotropic RTE [Jakob et al. 2010]. To do so, we need
to specify a normalized phase function, an albedo, and a direction-
ally varying coefficient of attenuation.
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To specify a phase function, consider a single color channel. For
each value of ωo, we can construct a probability distribution over
the sphere of incoming directions that is proportional to S(ωi,ωo)
and use this distribution as the (direction-dependent) phase func-
tion. Our implementation uses the probability distribution, com-
puted by tabulation of both ωi and ωo, for importance sampling of
the fiber scattering model as the phase function. However, because
CR and CT T can have different values in different channels, we con-
struct a separate phase function for each channel. When rendering,
we render three monochrome images for each channel before com-
bining them to a single colored image.

We leave the albedo α = σs/σt as a parameter to be fit by our
fitting process.

For the extinction coefficient, we choose a function such that
σt is maximal when the light’s direction is perpendicular to the
local fiber direction and decreases smoothly to 0 when the light’s
direction is parallel to the local fiber direction. In particular, we
choose:

σt(ω) = σt,max

√
1− (ω ·d)2 (10)

where d is the local fiber direction, and σt,max is the maximum co-
efficient of extinction, which is a parameter to the model. In theory,
σt,max is a parameter our fitting process can fit. However, we set it
to constant as will be discussed in the next section.

5. APPEARANCE MATCHING

In this section we explain our appearance matching method. As
outlined in Section 3, the method receives as input photographs
of a material and corresponding scenes with the same geometric
configuration of camera, cloth sample, and light source. Its goal is
to find model parameters that result in renderings that match the
photographs. The method quantifies the differences between pho-
tographs and renderings with an objective function, and minimizes
its value through stochastic gradient descent on the model parame-
ters.

To implement this method, we must obtain derivatives of the ob-
jective function with respect to the model parameters, which in turn
requires differentiating the rendered images with respect to the pa-
rameters. We begin with an introduction to a derivative estimation
method from stochastic simulation and its application to path trac-
ing. We then discuss the choice of objective function and the gradi-
ent descent optimization.

5.1 Derivative Estimation. In the path integral formulation
of physically based rendering, the intensity of a pixel is an integral
of a contribution function over path space. Consider a scattering
model parameter θ . The intensity depends on θ as follows:

I(θ) :=
∫

Ω

fθ (x) dx. (11)

where Ω is the space of all paths in the scene, and fθ (x) is the
contribution of the path x.

With some reasonable smoothness conditions, it is possible to
compute the derivative of I(θ) by passing the derivative operator
through the integral:

I′(θ) =
d

dθ

∫
Ω

fθ (x) dx =
∫

Ω

d fθ (x)
dθ

dx. (12)

This integral, then, can be estimated by Monte Carlo integration:

I′(θ) =
∫

Ω

(d fθ/dθ)(x)
p(x)

p(x) dx = EX̄

[
(d fθ/dθ)(X̄)

p(X̄)

]
(13)

where p is any fixed probability distribution, and X̄ is a path random
variable with distribution p.

Now, we want to evaluate the derivative at θ = θ0. Since p is
an arbitrary fixed probability distribution, we can use importance
sampling based on the value θ0 to pick an efficient probability dis-
tribution pθ0 . Then, an unbiased estimator of I′(θ0) is given by:

(d fθ/dθ)|θ=θ0(x̄)
pθ0(x̄)

(14)

where x̄ is a path sampled according to pθ0 .
Recall that f consists of a product of terms such as BSDF evalu-

ations, volume transmittances, and emitter intensities. Abstracting
the origins of the individual terms2, this may be written as:

fθ (x̄) =
N

∏
i=1

fi,θ (x̄). (15)

As a result,

d fθ (x̄)
dθ

= fθ (x̄)
N

∑
i=1

(d fi,θ/dθ)(x̄)
fi,θ (x̄)

. (16)

Substituting the above into (14), the expression evaluated by the
estimator for I′(θ0) is:

fθ0(x̄)
pθ0(x̄)

[ N

∑
i=1

ri,θ0 (x̄)︷ ︸︸ ︷
(d fi,θ/dθ)|θ=θ0(x̄)

fi,θ0(x̄)

]
. (17)

As a result, instrumenting a path tracer to estimate I′(θ0) is rela-
tively straightforward. For each term fi,θ0(x̄) calculated while trac-
ing a path, the path tracer need only accumulate the associated term
ri,θ0(x̄) into a running sum to obtain from the same path an esti-
mate of I and I′. Moreover, the same path may yield estimates of
derivatives of I with respect to an arbitrary number of parameters
by accumulating sums of r for each parameter.

In our implementation, how we compute derivatives depends on
how different parts of the BCSDF are evaluated. When a part is
evaluated directly (for example, the term for the R mode), we sym-
bolically differentiate the expression for that part and write another
piece of code to carry out the derived calculation. Other parts, such
as the probability distribution in the volumetric model, are tabu-
lated. For these parts, we also tabulate the derivatives with respect
to relevant parameters as we tabulate the parts.

Figure 4 shows visualizations of the derivatives of images of the
Fleece fabric model under two lighting/viewing configurations.

5.2 Measurements. To derive a model that matches a real
piece of fabric, we need measurements of that fabric to match
against. For each fabric, we took 16 photographs of a flat sample of
the cloth illuminated by a 10cm×10cm square light source located
about 61cm from the sample. Between measurements, we move
the camera and the light source around hemispheres centered at a
point on the fabric. Each photograph is cropped to a square cover-
ing roughly 1cm×1cm area of the material around the center point
of the camera’s orbit. Figure 5 visualizes the 16 measurement con-
figurations we use for appearance matching, with the corresponding
cropped photographs of Fleece.

2One may note that we make no assumption regarding path length or termi-
nation criteria, such as Russian Roulette. The choice of termination criteria
and any terms introduced by the use of Russian Roulette are folded into
pθ0 (X̄).
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image CR CT T βR βT T γT T

32,32

80,80

Fig. 4. Renderings and derivatives with respect to fitted parameters of the Fleece model. For two view configurations, we show the rendered Fleece and
visualizations of its derivatives with respect to each parameter of the scattering model of Section 4. In the derivative images, gray (shown in the borders)
indicates a value of zero, while lighter and darker values in each channel indicate positive and negative values, respectively. For scalar parameters, the image
shows how each channel changes with respect to the parameter. For the color parameters, each channel of the parameter affects a single channel of the
rendering, so the image visualizes the derivative of each channel of the rendering with respect to the color parameter in that channel. Derivative magnitudes
are not to scale across images.

A number of factors influenced our choice of using 16 measure-
ments. First, because there are 12 parameters to fit3, there must
be at least 12 observations to have a well-posed problem. Second,
we generally would like to use as few measurements for fitting as
possible because rendering detailed geometry with full light trans-
port simulation is time consuming. Third, however, we would like
enough diversity in lighting and viewing configurations. We set-
tled on 16 measurements, which allows us to include 4 types of
light/camera elevations (the columns of Figure 5), 2 types of fabric
rotations (the odd rows versus the even rows), and whether the light
source and the camera are in the same plane or not (Row 1 and 2
versus Row 3 and 4).

5.3 Objective Function. To optimize for parameter values,
we need an objective function, which is a scalar valued function that
summarizes the difference between the photographs and the corre-
sponding renderings. We denote the objective function by f (~R~θ

, ~M)

where ~θ is the vector of values of all the rendering parameters, ~R~θ
is the vector of pixel intensities of the rendered images when the pa-
rameters are set to ~θ , and ~M is the same vector of the photographs.

The photographs and the rendered images show views of the ma-
terial under matching conditions, but do not show the same piece of
fabric, so the objective function must compare the images without
depending on the details being the same. The simplest way to do
this is to average the whole image so that differences in the spatial
details do not matter. Therefore, we form the measurement vector
~M by concatenating the average intensities of the 16 measured im-
ages in each color channel. In effect, we rely on fiber-level micro-
geometry to ensure a texture that is at least plausible. We optimize
only against the average intensities of our measurements, guaran-
teeing that the base color and highlight of the material, which are
visible at near and far scales, are captured accurately.

We now discuss our choice of the objective function f . Recall
that the rendered measurements ~R~θ

and their derivatives are only

3The number of parameters comes from the combination of using the volu-
metric microgeometry model and the phase function derived from the fiber
scattering function in Section 4. The parameters are CR (3), βR (1), CT T (3),
βT T (1), γT T (1), and α (3), so in total there are 3+1+3+1+1+3 = 12
parameters.

80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

64,64 -64,48 32,32 64,32

Fig. 5. Measurements used in fitting process. The icons indicate the ori-
entation of the material (bolded edges), the light source (brown), and the
camera (blue); the normal angles to the camera and light are given beneath.
Due to limitations of the measurement apparatus, normal angles of 80 de-
grees in the final row are constrained to 64 degrees.

available as unbiased estimates from the renderer, so we will not
be able to calculate f or its gradient exactly. Moreover, if one de-
sires the theoretical convergence properties of stochastic gradient
descent, we must calculate an unbiased estimate of f and its gradi-
ent. Thus, f must interchange with expectations as follows:

E[ f (~R~θ
, ~M)] = f (E[~R~θ

], ~M). (18)

We observe that all multivariate polynomials in the components
of ~R~θ

satisfy the above property, as long as any rendered values
~R~θ

(i) that occur in the same product are uncorrelated, e.g., by being
calculated in separate renderings.

Our objective function takes the form of a weighted sum of terms
fimage calculated per image:

f (~R, ~M) =
N

∑
i=1

wi fimage(~R(i), ~M(i)) (19)

where ~R(i) and ~M(i) contain the average intensities in each channel
of the render and photograph of configuration i, respectively. The
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per-image terms are:

wi =
1

max(ai,τ)2

fimage(~R(i), ~M(i)) = ∑
c∈{r,g,b}

(~R(i)c− ~M(i)c)
2. (20)

The weight wi is chosen such that each term of the sum in (19) ap-
proximates the square of the relative error between fimage and ~M(i).
For simplicity, we use the average intensity ai = (~M(i)r + ~M(i)g +
~M(i)b)/3 of photograph i instead of assigning different weights to
different channels. We calculate the relative error of each measure-
ment to avoid overfitting the intensities of particularly bright im-
ages such as when the camera views the specular highlight pro-
duced by the light source at grazing angles.

Additionally, we threshold the weights of dark photographs to
not be lower than 1/τ where τ is set to 0.02 for all the fittings.
Introducing the threshold prevents the optimization from overfitting
the intensities of very dark images, where even differences due to
the dark current noise produced by the camera may result in a large
relative error in intensity.

As mentioned earlier, we want to evaluate an unbiased estimate
of f , given the unbiased estimates of average intensities obtained
from the renderer. Because fimage contains squares of the per-
channel average intensities Ri,c of the rendered images, each image
must be rendered twice independently to make them uncorrelated.
In this way, we may compute the squared difference without intro-
ducing bias.

5.4 Stochastic Gradient Descent Optimization. We now
wish to explore the space of rendering parameter configurations ~θ
to minimize the value of f . For convenience, consider f as a direct
function of the parameters ~θ . In stochastic gradient descent, we
start with an initial parameter value θ (0). We then iteratively mod-
ify the parameter values in the opposite direction of the (estimated)
gradient:

~θ (i+1) = ~θ (i)−αi ∇ f
(
~θ (i)), (21)

where αi is a scaling factor, often called the learning rate, that
changes as the iteration proceeds. Despite the noise in the gradi-
ent estimate, it can be shown that the iteration converges to the
global optimum given that f is convex over the search space and
that the learning rates decrease at the appropriate speed: namely, if
∑

∞
i=1 α2

i < ∞ and ∑
∞
i=1 αi = ∞ [Bottou 2010].

In our implementation, we choose the harmonic series αi = a/i
as the learning rates, where a is a constant. While the choice of
a has no effect on the convergence guarantee, choosing a value
that makes the optimization converge quickly is critical in practice.
To make finding one possible, we non-linearly scale the parameter
space using the process described in Section 5.5.

We perform the gradient descent as follows. Initializing ~θ to a
starting value ~Θ (defined in the next section), we run six different
stochastic gradient descent iterations for exponentially bracketed
choices of the learning rate multiplier a, running each for 60 iter-
ations. To slow the 1/i decay of the step size while preserving the
convergence guarantees of SGD, we initialize the iteration number
i to 50. We select the optimized parameters with the lowest reported
objective function value f (~R~θ

, ~M) as our result. In some instances,
the gradient descent yielding the least residuals continued to os-
cillate intensely around a local minimum of the objective function
after 60 iterations; in such cases, we performed a final 10 iterations
at one tenth the last learning rate to descend to the local minimum.

Table II. Fitting domains of rendering parameters.
Parameter Lower Bound Upper Bound Θ

CR 0.001 0.999 0.1
CT T 0.001 0.999 0.85

βR 1.0◦ 10.0◦ 5.0◦

βT T 10.0◦ 45.0◦ 10.0◦

γT T 1.0◦ 45.0◦ 10.0◦

α 0.001 0.999 0.85
γ 0.005 1.5 N/A
d N/A N/A 4000.0

The final column lists the default parameter values comprising the ~Θ of
the rescaling process described in Section 5.5. α and d denote the albedo
and density multiplier when rendering volume geometry (the latter is held
fixed). Parameter fitting for the microflake model by the method of [Zhao
et al. 2011] use the stated ranges for α and γ . For the black Velvet, a lower
bound of 0.04 was used for CR.

5.5 Parameter Rescaling and Ranges. A suitable learning
rate is hard to find when regions in parameter space have large dif-
ferences in their gradient magnitudes. Such a situation complicates
the selection of the learning rate because:

—The process may enter a neighborhood where gradients have
small magnitude. If the learning rate is too small, it will spend a
long time moving in short increments through this region.

—The region surrounding a local optimum may have gradients with
large magnitude. If the learning rate is too large, the optimization
process will repeatedly overshoot the local minimum many times
before converging.

For example, a rendering of cloth will change much more dramati-
cally with respect to the TT mode color, CT T , when the parameter
value is large than when the value is small. As such, a large learn-
ing rate is needed when CT T is small, and a small learning rate is
needed when CT T is large. A situation might arise where no single
learning rate works well on all regions.

We mitigate the effect of disparity in gradient magnitudes by au-
tomatically defining a mapping r from the rendering parameters ~θ
to a space of search parameters r(~θ). The stochastic gradient de-
scent is performed in this rescaled space instead of the space of
rendering parameters. Our goal is to find a mapping such that a
unit change in the remapped space r(~θ) corresponds to a constant
change in the objective function value. To approximate this, we
choose a starting configuration ~Θ of the rendering parameters and
rescale each parameter individually based on its effect on the ob-
jective function near this configuration.

For each parameter ~θp, we define a mapping rp for the parameter
as follows. We fix all other parameters to the values specified by ~Θ,
and calculate the average intensities ~R obtained by setting param-
eter ~θp to an ascending sequence of values c1, . . . ,ck spanning the
range we will permit the optimization to explore for this parameter.
We then define rp at the values c j as shown below, and extend it to
a piecewise linear function on the domain [c1,ck]:

rp(c1) = 0

rp(c j+1)− rp(c j) =
N

∑
i=0

wi

√
fimage(~R~Θ,~θi=c j

(i),~R~Θ,~θi=c j+1
(i)).

(22)
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Fig. 6. Calculated rescaling curves for the CT T and γT T parameters of the
scattering model of Section 4 for Fleece. The curves relate the parameters
r(θ) optimized by the gradient descent to the rendering parameters θ . The
starting parameter configuration ~Θ is given in Table II.

As ~θp increases from c j to c j+1, the increase in the function rp(~θp)

is equal to the change in the averages ~R, though we actually com-
pute the square root to counter the nonlinearity of fimage. Conse-
quently, regions of the domain of permitted values of ~θp that cor-
respond to a large change in ~R are mapped to larger regions in
the space of search parameter values rp(~θp). Figure 6 visualizes
the calculated rescaling curves rp for parameters of the scatter-
ing model of Section 4 that have large disparity between derivative
magnitudes in different regions.

The rescaling function r for all the parameters, a vector function,
is formed by assembling the per-parameter functions rp. However,
we treat scalar parameters (βR, γR, and γT T ) differently from color
parameters (CR and CT T ). For each scalar parameter p, we compute
rp as detailed above and use the same function in the assembly of
r. On the other hand, we treat a color parameter p as three separate
scalar parameters that always have the same value when computing
the rescaling curve rp. Consequently, changing the (scalar) value of
p is equivalent to changing the value of three scalar parameters at
the same time. Thus, when assembling r, we set the per-channel
function rred

p , rgreen
p , and rblue

p to rp/3 instead of rp.
Compared to not rescaling the parameters, our approach handles

the images’ different sensitivity to unit change of different param-
eters better. For example, we found that the rendered images are
much more sensitive to changes in CT T than in γT T , so at least
a component-wise linear rescaling was essential. However, adding
non-linearity was also very important. Before employing the rescal-
ing method we proposed, we found it difficult to fit to a material that
was relatively bright in at least one channel in grazing configura-
tions. As a specific example, the rendered images were so sensitive
to CT T in the grazing configurations that, unless the initial condi-
tion was very near to the correct value, the gradients were large
enough to push the CT T value to both extremes of the domain un-
less the step size was very small.

Table II lists the ranges of values we permit each parameter to
take during the optimization. The varying ranges permitted for the
lobe widths are due to practical considerations. We observed that
values of βR greater than 10 degrees led to an implausibly diffuse
fiber-level appearance without significantly affecting the average
intensities fitted against by the optimization. Moreover, values of
βT T less than 10 degrees led to instability in the fitting process,
as they greatly increased the sensitivity of the rendered images to
the CT T parameter in grazing views with intense highlights. For the
black Velvet, we constrained CR to be at least 0.04.

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

(a) (b) (c)

Fig. 7. Fitted Fleece results for volumes of different density scales d.
When the camera and light are both above the plane of the material, re-
ducing the density from (a) 4000 to (b) 2000 to (c) 1000 has minimal effect
on the ability of the optimization to recover the same appearance. In draped
configurations, though, a scale of 1000 leads to an unrealistically thin ap-
pearance.

The rightmost column of Table II lists the default parameter val-
ues used when rendering images to define the rescaling functions
rp. We chose values we believed would be typical of an “average”
material, so that the rescaling is defined relative to a region of the
parameter space we expect to be most heavily explored by the op-
timization. For each parameter, we choose a nine-value sequence
c1, . . . ,c9 for use in defining the function r, assigning values c j
more finely towards the upper bound of CT T and towards the lower
bounds of CR,βR,βT T , and γT T , capturing the greater sensitivity of
the rendered images to values of the parameters in those regions.
More details on these values can be found in the supplementary
material.

For volume geometry, we include the single-scattering albedo
α in the fitting process but leave the density multiplier d fixed.
As shown in Figure 7, we observed that when fitting against the
photographs, all of which place both the camera and light source
above the plane of the material, the value of d did not significantly
affect the ability of the optimization to match the photographed
appearance. Under draped configurations, though, fitted parameters
with a low d resulted in an unacceptably “thin” appearance.

6. FABRIC GEOMETRY CONSTRUCTION

In this section, we show how to construct fabric microgeometry. We
construct two representations: a surface-based one and a volumet-
ric one. The surface-based representation is a collection of discrete
surfaces modeling the surfaces of individual fibers, while the vol-
umetric representation stores density and fiber direction in a high
resolution voxel grid.

Both representations are created from micro CT scans of cloth
samples according to the pipeline in Figure 8. We use Zhao et al.’s
[2011] image processing pipeline to compute a preliminary volu-
metric representation, a voxel array containing (1) the density of
the material in each voxel, and, (2) the local direction of the fiber
at that voxel. From this volume, we infer locations of textile fibers
and then construct cylindrical surfaces to cover them. This gives
us the surface-based fiber representation. Lastly, we use this fiber
model to improve the consistency of the preliminary fiber direction
volume, resulting in the final volumetric representation.
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Micro CT
images

Image
processing

pipeline
[Zhao 2011]

Volumetric geometry

Fiber geometry construction
(Section 6.1 to 6.5)

Fiber mesh geometry

Transferring fiber directions
(Section 6.7)

Volumetric geometry with
consistent fiber directions

Fig. 8. Fabric geometry creation pipeline.

We first focus on the process that converts the volumetric repre-
sentation to fibers. The input to this process is a voxel array with
density and direction, and the output is fiber geometry in the form
of a collection of 3D polylines. Each segment of polyline acts as
the axis of symmetry of a cylinder with circular cross-section, and
consecutive cylinders sharing a vertex are joined with a miter joint,
producing a continuous 3D surface for rendering.

We assume that the input volume is roughly axis-aligned; i.e.,
the weft fibers are roughly along the x-axis, the warp fibers along
the y-axis, and in case of fabrics such as velvet, vertical fibers along
the z-axis.

To produce fiber geometry, the following steps are taken:

(1) Volume decomposition. The input density volume is decom-
posed into three volumes corresponding to the x-, y-, and z-
axis. In this way, the warp, weft, and vertical fibers can be pro-
cessed separately along their length.

(2) Fiber center detection. The 2D slices of each volume along the
corresponding axis are processed independently to detect cross
sectional centers for fibers going through the slices.

(3) Polyline creation and smoothing. Nearby fiber centers in adja-
cent slices are linked together to form chained polylines in 3D.
These polylines act as skeletons of the reconstructed fibers.
Short polylines are removed, and the union of all polylines
from the three volumes become the polylines for the entire vol-
ume. These polylines are then smoothed.

(4) Radius determination. The single radius of all the cylinders
constituting the fiber surfaces is then determined.

We now discuss each of these steps in more detail.

6.1 Volume Decomposition. The first step is to separate the
model into three subvolumes containing only the fibers oriented
(approximately) along the warp, the weft, and the vertical direc-
tions. The three subvolumes are created simply by associating each
voxel with the coordinate axis closest to its direction vector (de-
termined by selecting the component of the direction vector that is
largest in absolute value). The three subvolumes are later processed
independently to recover fibers that run primarily in each volume’s
associated direction.

Figure 9 depicts the result of decomposing a micro CT scan vol-
ume of Velvet, which has pile fibers sticking up perpendicular to the
overall plane of the fabric. We see that the x- and y-dominant vol-
umes primarily contain voxels in the woven part (one for the warp,

original x-dominant y-dominant z-dominant

Fig. 9. The density volume obtained from a micro CT scan of Velvet and
its three decomposed volumes.

(a) (b) (c)

Fig. 10. (a) A slice of the z-dominant subvolume of Velvet in Figure 9
in 3D view, (b) the slice viewed as a 2D image, and (c) the result of the
convolution of the Laplacian of Gaussian filter to the slice image with the
detected blob positions depicted as small red squares.

the other for the weft), and the z-dominant volume mostly contains
the pile fibers. Noise voxels can be observed in all the volumes and
can give rise to short extraneous fibers, which are removed later in
the pipeline.

6.2 Fiber Center Detection. Each subvolume is processed
in 2D slices perpendicular to its dominant direction, with the goal
of locating where each fiber crosses each slice. Since fibers are
roughly perpendicular to the slices, they appear as compact blobs
of higher density. To determine the centers of these blobs, we apply
the standard blob detector which convolves the slice image with
Laplacian-of-Gaussian filters at several scales, and then finds the
local minima of the response in both scale and spatial domain [Lin-
deberg 1998]. Figure 10 shows fiber centers detected in a slice of
the z-dominant axis of the Velvet volume in Figure 9. The result is a
collection of fiber locations {(i1, j1),(i2, j2), . . . ,(im, jm)} for each
slice, which must be matched up across slices to produce 3D fibers.

6.3 Fiber Building. In this step, we connect the detected
fiber centers to create polylines representing the individual fibers.
Contrary to previous approaches to fiber detection that grow fibers
one after another [Jakob et al. 2009; Luo et al. 2013], we view this
as a matching task: we first decide which detected centers in all
pairs of neighboring slices belong to the same fiber, then extract
maximal paths in the resulting graph to determine the polylines to
generate.

We connect fibers across slices by solving a series of bipartite
graph matching problems, each matching the fiber centers detected
in slice k to the centers in slice k+ 1. These fiber centers become
vertices in a weighted bipartite graph. Edges are constructed be-
tween vertices on different slices with weights inversely propor-
tional to the in-plane distance between the end points. In particular,
between point a in slice k and point b in slice k+1, there is an edge
with weight:

w(a,b) = exp(−d(a,b)2/(2σ
2)) (23)

d(a,b) =
√
(ia− i′b)

2 +( ja− j′b)
2. (24)
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x-dominant

y-dominant

z-dominant unioned polylines

before smoothing after smoothing
Fig. 11. Polylines generated by the fiber growing process and the effect of
smoothing on some generated polylines.

or zero if d(a,b)> σ . We used σ = 5 voxels for all the fabric vol-
umes we processed in this paper.

The maximum weighted bipartite matching can be solved to an
approximation ratio of 1/2 using an O(n2 logn) greedy algorithm
[Drake and Hougardy 2003], which is much faster at our problem
size than the optimal but O(n3) Hungarian algorithm. We found
that the greedy algorithm worked well with our data.

Due to noise, this process generates many short polylines in ad-
dition to the long polylines corresponding to well-tracked fibers.
We retain only polylines with at least 10 vertices when we collect
the results from the x, y, and z volumes together. Figure 11 shows
the result of this step on the Velvet volume.

6.4 Polyline Smoothing. Because fiber centers are located
independently per slice, the raw polylines are noisy (see Figure 11).
To reduce noise we smooth them as described in [Luo et al. 2013].
New vertex positions p1, p2, . . . , pn are computed to minimize the
energy:

E = ∑
i

α‖pi− p(0)i ‖
2 +‖pi−1−2pi + pi+1‖2 (25)

where p(0)i is the original 3D position of the ith vertex, and α = 0.1.

6.5 Radius Determination. Given the collection of poly-
lines determined above, we now need to compute a value for the
fiber radius to fully define the set of 3D cylinders that represent
the fibers. We choose the radius to match the volume covered by

the fibers to the voxels that is occupied by fibers in the original
volume.

More concretely, we first upsample the original volume by a fac-
tor of 4. Then, given a candidate value r of the radius, we rasterize
cylinders of radius r around all polylines into a volume of the same
resolution. The score for the value r is given by:

score(r) = |C(r)∩V |− |C(r)⊗V | (26)

where,

— C(r) is the set of voxels contained in one of the cylinders when
the radius is set to value r,

— V is the set of non-empty voxels in the original volume, and
— ⊗ is the symmetric difference operator:

A⊗B = (A∪B)− (A∩B).

The radius values are found by trying out 20 evenly spaced values
between w to 4w, where w is the width of a voxel in the original
volume.

6.6 Results and Discussions. Figure 12 compares render-
ings of the original micro CT scan volumes of six fabrics with the
constructed fiber geometry. In general, the fibers agree with the ge-
ometry of the volume but look a bit thinner because (1) the pipeline
filtered out many short fibers, and (2) the radii were determined in
part by trying to minimize the number of voxels covered by the
cylinders but not the original volumes.

We note that our pipeline can break highly curved fibers into
disconnected pieces when different parts of the fiber belong to dif-
ferent decomposed volumes. We do not attempt to reconnect the
fibers, since, as we shall see in the final rendering of the fabric
model, some broken fibers are acceptable at typical viewing dis-
tances where fibers are not clearly resolved.

Our pipeline requires a scan resolution that resolves individual
fibers well. It also requires that the fiber cross sections appear cir-
cular or elliptical at the scanned resolution, which might not be true
for synthetic fibers such as Rayon, Nylon, and acetate.

6.7 Improving volume direction fields. In real cloth, fine-
scale irregularities in the fibers have a major effect on luster:
smooth, well aligned fibers (as in many silks and synthetics) re-
flect coherently and produce bright highlights, whereas kinky and
irregularly arranged fibers (cotton, wool) reflect to a range of direc-
tions, producing a less shiny appearance. In fiber or volume models,
noise in the fiber curves or the direction volumes can introduce a
similar change in appearance—noise makes it impossible to match
the appearance of smooth fibers as seen in Silk or Velvet.

Smoothing of polylines is very effective in removing this noise
without disturbing fabric structure or over-smoothing less orga-
nized fabrics. But when smoothing directions in a volume, naı̈ve
approaches can easily smooth out important features by mixing the
directions belonging to different fibers. Rather than pursuing more
complex noise-reduction methods for the volume direction fields
and to keep the comparison between fibers and volumes on an equal
footing, we smoothed the volume direction fields by simply trans-
ferring the directions from the fiber models onto the volume model.
This is implemented by setting the direction of any voxel contained
in a fiber cylinder to a unit vector parallel to the fiber. To increase
coverage, we use cylinders of radius 2r instead of r, where r is the
radius determined in Section 6.5.

The result of the above process can be observed in the second
column of Figure 13. We can see that the direction field becomes
much less noisy, and the highlight in the rendering becomes much
more prominent relative to the base color of the material.
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Cotton Fleece Gabardine Silk Twill Velvet

original
volume

fiber
geometry

Fig. 12. Visualizations of original micro CT scan volumes of six pieces of fabric and their reconstructed fibers.

Before direction
improvement

After direction
improvement

Fabric
swatch

Draped
fabric

Rendering

Rendering
zoom-in

Fig. 13. The effect of fiber direction consistency on appearance. The first
two rows depict the local fiber direction at the first interaction between the
eye ray and the volume, visualizing the absolute values of the x, y, and z
components of direction as an RGB color. The volume in the second row is
obtained by tiling the swatch from the first row and then warping the tiled
volume with a shell map, as done in [Zhao et al. 2011].

In summary, we have shown how to compute a surface-based
fiber representation from the micro CT data, and how to transfer the
smoothed directions from this representation to create a volumetric
representation. We will now compare these two representations to
evaluate their ability to represent real fabrics accurately.

7. RESULTS

In this section, we present the results of our appearance matching
pipeline and compare various model representations for a range of
fabrics. We first detail our use of the geometry processing pipeline.
Then, we present the matching results and evaluate our appearance-
matched models against the photographed materials in different
configurations to validate our approach.

7.1 Data Acquisition and Processing

We processed 6 cloth samples whose details are given in Table III.
All samples, except for Gabardine, were scanned with the XRa-
dia VERSA XRM-500 scanner at the Cornell Imaging Multiscale
CT Facility. Gabardine’s scan was made at the High-Resolution X-
ray Computed Tomography Facility at The University of Texas at
Austin. Each volumetric scan, except Fleece, was rotated so that
the fibers are aligned with the x-, y-, and z- axis according to the
requirement in Section 4. The volumes were then cropped so that
they can be easily tiled.

Some volumes and their associated fibers received the following
special processing:

— The Silk volume was sheared to align the warp and weft yarns
with the x- and y- axes, respectively.

— The warp and weft yarns of Twill are composed of different
types of fibers with different radii. To capture this difference, we
independently ran the radius determination procedure for fibers
generated from the x-dominant and y-dominant subvolumes.

— To reduce seams when tiling fabrics with evident regular struc-
ture — i.e., Silk, Gabardine, and Twill — we created Wang tiles
[Cohen et al. 2003] of the volumes based on their top-down
views and used the Wang tiles as source volumes to generate
fibers instead of the original volumes.

— Some x- and y-slices of the Cotton volume were removed to
ensure that the spacing between the warp and weft yarns roughly
match the photographs taken for parameter fitting. This is done
so that the area of the rendered image that is covered by a fiber
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Table III. Cloth samples, volumetric model parameters, and fiber radii.
Name Material Weave Color Voxel size Data size s t h εd εJ Fiber radius
Fleece N/A unwoven∗ blue 6.60 µm 500×540×586 2.00 3.00 11 0.23 −14 8.68 µm

Gabardine wool twill red 5.00 µm 671×457×233 1.00 2.00 16 0.45 −10 16.05 µm
Silk silk satin red 1.40 µm 780×530×160 1.00 2.00 11 0.55 −30 4.72 µm

Velvet N/A unwoven black 3.03 µm 430×478×524 0.25 0.75 15 0.58 −155 9.25 µm
Twill N/A twill green 2.51 µm 570×715×165 1.00 2.00 11 0.46 −16 4.88/7.27 µm

Cotton cotton gauze white 5.50 µm 461×440×160 0.25 0.75 13 0.41 −5 8.97µm
Note: The data sizes were computed after the rotation and cropping were performed. The s, t, h, εd and εJ are the parameters for the image
processing pipeline described in [Zhao et al. 2011]. Twill fabric has two fiber radii because the warp and the weft fibers are of different
sizes. ∗Fleece is a knit fabric processed so that the visible surface is similar to felt.

is roughly the same as that of the photographs. Since the weave
pattern of the material is quite loose, the inter-yarn spacing may
change locally depending on the handling of the material.

The photographs of cloth samples were taken using the Cornell
spherical gantry equipped with a Canon EOS 50D camera and a
10cm× 10cm LED area light source. The fabrics were mounted
on a turntable whose top is a black metal plate. As a result, the
photographs did not capture the appearance of the fabrics alone but
the appearance of the fabrics with the metal plate underneath them.
We simulate this condition by inserting a black mesh underneath
all the fabrics being rendered.

For each of the fabric samples, we created three complete fabric
models:

— The first uses the fiber mesh geometry we reconstruct
(Section 6) and our fiber scattering model (Section 4). This
model allows us to explore the capability of the fiber geome-
try/fiber appearance approach. We refer to this combination as
“Fiber/BCSDF”.

— The second uses the volumetric geometry representation with
improved direction field (Section 6.7) and the phase function de-
rived from the fiber scattering function (Section 4.4). This model
allows us to assess the volumetric geometry/fiber appearance ap-
proach. We refer to this combination as “Volume/BCSDF”.

— The third uses the same volumetric geometry representation as
the second approach with the microflake-based phase function as
specified in [Zhao et al. 2011]. This model allows us to compare
the above two new approaches against Zhao et al.’s work. We
refer to this combination as “Volume/microflake”.

We compute the scattering parameters for the Volume/microflake
model by adapting the fitting procedure from Zhao et al.’s work to
the measurements used for the other models we evaluate. Zhao et al.
photograph a curved sample of the material, isolate a region of the
image with varied appearance, and assign microflake model param-
eters to match the mean and variance of the pixels in the region. To
approximate this, we concatenate the images used by our appear-
ance matching method and treat the concatenated image as the re-
gion to optimize. As shown in Figure 14, the microflake model is
incapable of reproducing the extreme highlights seen in two of the
fitting images, so we omit these when fitting the model.

We performed all appearance matching using PCs with 2.27 GHz
Intel XEON CPUs and at least 64 GB of RAM. A scene configura-
tion is rendered into a 64×64 image at 64 samples per pixel. An it-
eration with 16 configurations, each rendered two times, took about
14 minutes to complete on a single core. We performed 60 itera-
tions, and the whole process took about 14 core-hours for a fabric
sample modeled with either the Fiber/BCSDF and Volume/BCSDF
models. The Volume/microflake fitting took 2 core-hours because

d\γ 0.01 0.1 0.25 0.5 1.0

250

500

1000

2000

4000

80,80

Fig. 14. Insufficient brightness of microflake phase function at grazing an-
gles. The camera and light source are at a normal angle of 80 degrees and in
a plane with the imaged point on the Fleece volume. Bracketing the density
scale multiplier d and microflake standard deviation γ , no configuration is
able to match the intensity of the photograph. The albedo is left fixed at
0.999 as the image brightens monotonically with albedo.

the microflake model was faster to compute and 27 binary search
iterations were performed.

7.2 Validation

Validation in planar configurations. Figure 18 shows the pho-
tographs used by the appearance matching process for each mate-
rial alongside renderings produced by the three models. Figures 19
and 20 show the scatter plots of the average pixel values of the pho-
tographs versus the renderings. The supplementary material con-
tains 492 more validation configurations that were not used for fit-
ting. The corresponding fitted parameter values are given in Ta-
ble IV.

Validation in non-planar configurations. To evaluate the quali-
tative appearance in more natural configurations, Figure 21 shows
the fabrics wrapped around a cylinder of radius 1.5cm and the ren-
derings of the three models in the same configuration. Figures 22
and 23 plot the average pixel values of each column of the images
in Figure 21, allowing us to quantitatively compare the methods.4
Figure 24, and Figure 25 shows the renderings of the fabrics in a
simple draped configuration. In Figure 15, we also show Velvet in
a more elaborate draped configuration which better reveals the fab-
ric’s characteristic highlights.

7.3 Discussion

We now discuss the results of each fabric in turn before drawing
conclusions.

4The photographs and the corresponding renderings are not aligned hori-
zontally. As a result, we shift the photograph in the x-axis so that the peak
in the φi−φo = 162◦ configuration aligns with the peaks of the renderings.
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Fibers/BCSDF Volume/BCSDF Volume/microflake

.
Fig. 15. Renderings of Velvet in a draped configuration. Our appearance matching process yielded parameters that resulted in different highlight brightness
between the images. However, the highlight consistently emerges as the fabric turns away from the camera in all models.

Fleece. The appearance of Fleece is matched well by
the Fiber/BCSDF and Volume/BCSDF models. The Vol-
ume/microflake model also performs well in non-grazing
configurations, but it is unable to reproduce the brightness in
grazing configurations (i.e., the first two rows of the first column
in Figure 18 and the φi− φo = 126◦ and 162◦ in Figures 21 and
22). The second row of Figure 24 shows that this discrepancy has
a large impact on appearance particularly when the light source
and the camera are on the opposite side of the fabric. Because the
microflake model has no transmission component, it produces an
opaque appearance, so the microflake Fleece looks less soft than
our models.

Gabardine. In Figure 18 and Figure 21, our two models are
able to match the appearance in all configurations well while the
Fiber/BCSDF performs somewhat better in the (80◦,80◦) graz-
ing configurations in Figure 18. On the other hand, the Vol-
ume/microflake still cannot produce bright highlights in these graz-
ing configurations. Figure 21 and 22 also exhibit the same trends.
All models are close to the photographs when the fabric is in
retroreflection configurations (θi−θo low). The Volume/microflake
model, however, becomes too dark in grazing configurations (θi−
θo high), but the other two models become somewhat too bright.
This indicates that the new models are improvements over the pre-
vious approach for Gabardine.

Silk. Our model still performs better than the Volume/microflake
at grazing configurations. However, in Figure 18, the grazing high-
lights rendered with our models have a slight cyan tint. Addition-
ally, in Figure 22, the BCSDF models performs less well in the
green and blue channel in configurations with low θi− θo in con-
trast to their good performance in the red channel.

These behaviors are because the red channel of CR in the two
BCSDF models is much higher than the blue and green channels.
The parameters cause light reflected off fibers to be very bright in
the red channel and dim in the others. They also cause the light
transmitted through fibers to have a cyan tint. We surmise that the
fitting process arrived at these values because it needs to set the red
channel of CR high to match the chromaticity of the dim training
configurations, which are weighted higher by the objective func-
tion: we can see in Figure 19 that the two BCSDF models match
the red channel of the dim configurations better than brighter ones.
As such, the behaviors are likely to be caused by the models’ addi-
tional expressiveness and our choice of objective function.

However, in Figures 21 and 24, the three models look very sim-
ilar in retroreflection configurations, and the cyan tint of the high-

light is very hard to notice. Thus, the suboptimal behaviors of the
BCSDF models do not have a significant negative impact, but the
inability of the Volume/microflake model to become bright in for-
ward scattering configurations takes away a large part of the overall
appearance.

Velvet. Velvet was a challenging material to fit because its fit-
ting residuals were higher than for other materials. As a result, the
optimization with the settings used for the other materials did not
consistently recover the highlights and speckled appearance that
characterize it. These effects are more likely to arise from the R
mode, given the dark base color of the material, so we constrained
CR to be at least 0.04 for Velvet, to force the high-residual fit to-
wards a region more likely to produce acceptable results.

In Figure 18, the Fiber/BCSDF model matches the training data
better than the two volumetric models, which are too bright in many
configurations. Nevertheless, Figure 20 suggests that all models fit
poorly to validation examples. This indicates that more training
data might lead to parameters that generalize better to the observed
data.

In all draped configurations (Figures 15, 21, and 25), the largest
difference between the models is the brightness of the highlights.
Note though that all the highlights appear at the same locations:
where the fabric turns away from the camera. Moreover, the 10◦,
126◦ and 162◦ columns of Figure 23 are evidence that all models
can predict the locations of bright highlights under cylindrical con-
figurations despite magnitudes being off. This suggests that all 3
models, together with a consistent direction field, can model Vel-
vet’s appearance, but the appearance matching process needs to be
improved to obtain better parameter values.

Still, we note that Velvet is a tricky material because its pile
fibers move when touched, and we did not control their directions
both when the micro CT scanning was performed and when the
photographs were taken. While using more training examples can
improve results post hoc, controlling the microgeometry might be
required to get truly good results.

Twill. According to Figure 20, our BCSDF models can quanti-
tatively match the training data better than the Volume/microflake.
However, there are three problems with the result. The first is that
all models generalize rather poorly to the validation configurations.

The second is that our models are worse at reproducing the fab-
ric’s texture than the Volume/microflake. The photographs feature
alternating bright yellow and dark brown stripes, but our models
do not yield as much color contrast. On the other hand, the Vol-
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Fig. 16. An alternative set of scattering parameters of the Fiber/BCSDF
model for Twill. These parameters were derived manually from the fitted
parameters with CR changed to (0.472,0.460,0.218) and CT T changed to
(0.540,0.435,0.310). Under configurations used for parameter fitting, we
compare (a) the photographs with (b) the alternative parameters and (c)
the parameters fitted by our process. Additionally, we provide a photo and
renderings of the fabric in the cylindrical configuration where φo − φi =
10◦. For completeness, we also provide the Volume/microflake model (d)
in the cylindrical configuration. While the alternative parameters and the
microflake are inferior at the BRDF level, they produce more contrast in the
texture.

ume/microflake produces more contrast between stripes, but does
not capture the BRDF well in Figure 18.

Low texture contrast was caused by the fibers’ being made trans-
parent, as can be seen by low CR values and high CT T values. How-
ever, the fibers still reflect back some light in reality. Indeed, setting
CR higher makes the texture more prominent but worsens the over-
all color matches. (See Figure 16.) A cost function that considers
contrast between different image parts might be able to trade BRDF
correctness with texture correctness and is left for future work.

The third is that there is a feature in photographs of the cylin-
drical configurations that none of the models could capture. The
photographs get brighter around the cylinder’s edges in the 10◦,
50◦, and 90◦ configurations while the models get dimmer.

The fact that our models can fit the training data well but not
the validation data might be explained by overfitting. However, the
fact that we have to trade BRDF correctness with texture contrast
and that none of the models can account for the bright cylinder’s
edges suggest rather that the models are not expressive enough to
represent all aspects of Twill’s appearance. The reason may be that
the warp and weft yarns, while appearing to be dyed the same color,
might actually have different optical properties.

Cotton. Photographs in Figure 21 show that Cotton is a rather
diffuse material, and all 3 models can capture this appearance as
well as provide realistic geometric details. Nevertheless, measure-
ments in Figure 18 indicate that the fabric gets extremely bright at
the 80◦ grazing configurations, and none of the models could imi-
tate this behavior. Moreover, they could not match the color of the
photographs in any of the remaining configurations. Compared to
the other materials, the recovered Cotton fiber geometry and vol-
ume are unusually sparse within the threads of the material, sug-
gesting that too many small fibers were thresholded away by the
volume processing, limiting the ability of the models to reflect suf-
ficient light back to the viewer.

Highlights. While we matched against a sparse sample of the
fabric’s BRDF under flat configurations, Figures 22 and 23 suggest

that our model produced highlights at the right locations and could
imitate the complex highlight shapes such as those of Silk and Vel-
vet in the 10◦ configurations. Our models always match the mag-
nitude of the highlights better in the grazing configurations than
the Volume/microflake model. Nonetheless, there are some cases
where the latter performed better in non-grazing configurations; for
example, Fleece and Silk in the blue and green channels. However,
as can be seen in Figure 21, cases where our models perform worse
than the Volume/microflake do not lead to drastic differences from
the reference photographs like the dim grazing highlights of the
Volume/microflake.

The lobe widths our system produces may not be accurate. In Ta-
ble IV, many lobe width values are at their extremes, especially the
βR and βT T values of the two BCSDF models. We observed that
decreasing βR and βT T led to brighter images in grazing configu-
rations, so these parameter values tend to get pushed to their lower
bounds. We also surmise that the extra degrees of freedom intro-
duced by the albedo α in the Volume/BCSDF model caused more
of the model’s βR and βT T values to be at the extremes. As such,
adding more training examples might alleviate this problem. Still,
note that, while the individual lobe widths might not be accurate,
the overall appearances are good in cases as Fleece, Gabardine, and
Silk. Moreover, the problems of Twill and Cotton do not seem to
be related to lobe widths at all.

We now draw conclusions from the discussions above.

Comparison with microflake model. For Fleece, Gabardine,
Twill, and Silk, our new models—the Fiber/BCSDF and the
Volume/BCSDF—are able to produce results that match the far-
field photographed appearance across the images used for fitting.
By comparison, the Volume/microflake model produces renderings
that vary less in intensity from image to image, and fail to recover
the intense highlights as the camera and light approach grazing an-
gles. Thus, we conclude that our models are superior to the the
microflake model. We believe the Fresnel term, which makes the
R mode considerably brighter at grazing angles, accounts for much
of its advantages.

Fiber versus volume. Except for Velvet, the Fiber/BCSDF and
the Volume/BCSDF models produce very similar results. Never-
theless, in Figure 18, the Fiber/BCSDF model generally produces
slightly brighter images in grazing configurations. Still, the differ-
ence in brightness of grazing highlights is very hard to notice in
draped configurations of Figures 21, 24, and 25. We therefore con-
clude that, in practice, the fiber geometry and volume geometry are
similarly good when used with our light scattering model.

Areas for Improvement. While we consider Fleece, Gabardine,
and Silk to be success cases, the results on the other three fabrics
indicate a few potential areas of improvement.

—Number of training examples. Velvet indicates the small num-
ber of training examples may yield parameters that generalize
poorly. Few training examples might lead to lobe width values’
being pushed to their extremes, especially when there are extra
degrees of freedoms in the scattering model.

—Texture correctness. Our objective function only considers cor-
rectness at the BRDF level, ignoring texture correctness. As seen
in Twill, optimizing according to the function led to parameters
that do not reproduce the material’s texture contrast.

—Microgeometry correctness. We currently have no means to test
whether the microgeometry is accurate, and the inaccuracy could
have caused problems in Velvet and Cotton.
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With underlying black mesh Without underlying black mesh

Fig. 17. Appearance of Gabardine and Twill with and without the under-
lying black meshes.

—Model correctness. Our models seem to be not expressive
enough to capture Twill’s appearance. Moreover, while perform-
ing much better than the Volume/microflake, our models still
could not precisely reproduce the extremely bright grazing high-
lights of Silk, Twill, and Cotton.

—Non-physical behaviors. The cyan tint in Silk’s grazing high-
light, while not a major issue on the overall fitted appearance,
shows that our light scattering model can produce non-physical
appearance. This issue arises from our allowing the R mode to
have color to achieve better matching results. A model where ex-
pressiveness is retained and physics-based behaviors are strictly
observed is a possible future work.

7.4 Optical Thickness

As we focused on reflection from fabric rather than transmission,
our results do not address the correctness of back-lit appearance.
The density scale for the volumes was arbitrarily fixed because it
had little effect on the appearance from the illuminated side. (This
was also done in [Zhao et al. 2011].) As a result, the renderings
may appear optically thicker or thinner than the actual fabrics. Also,
while our fiber reconstruction algorithm tries to make the generated
fibers cover the micro CT volume well, some volume is always lost
because the algorithm throws away fibers to remove noise.

The optical thickness has a significant impact on appearance
when the fabric is not draped over an opaque object. Figure 7 il-
lustrates the effect of density on the appearance of volume models.
Figure 17 shows the change in appearance of the draped fiber mod-
els when the underlying black meshes are removed. Notice that the
fabrics become much brighter after removal due to multiple scat-
tering in and through their layers.

We emphasize that transmission is not a fundamental limitation,
but rather a part of the appearance space we have not yet measured.
It is entirely within the scope of our optimization and appearance
models, but it is currently unknown how well the models will fit
under back-lit configurations.

While the fiber and volume microgeometry representations are
similar in their abilities to capture fabric reflectance, the optical
thickness of the volume geometry can be controlled easily just by
setting the density scale. The density of fiber-based geometry can
be manipulated by changing the fiber radius, but how to compute

derivatives with respect to it is unclear. Therefore it is currently not
possible to optimize radius in our system, so the volume geometry
is advantageous in this regard. How to control the parameters to
achieve the right optical thickness is left for future work.

8. CONCLUSIONS

Reproducing the appearance of fabrics is critical for many appli-
cations. While progress has been made on increasingly sophisti-
cated appearance models for fabrics, matching the appearance of
real fabrics remains very hard. In this paper we made two contribu-
tions to creating fabric renderings that match real fabrics. First, we
introduced a novel appearance matching framework based on dif-
ferentiation and optimization to match rendered images with pho-
tographs. Second, we introduced a simple fiber-based scattering
model (BCSDF), and coupled this with new approaches to recon-
struct fiber-based geometry and better volumetric models of fabrics.
Finally, we matched the appearance of these new models against
real photographs and evaluated their strengths and weaknesses. We
found that having a fiber-based BCSDF scattering model was crit-
ical to match appearance in grazing configurations. Once we use
such a scattering model, both the fiber-based geometry and vol-
ume models were approximately similar in quality. Both these ap-
proaches proved superior over the prior state-of-art volume based
models with microflake scattering.

Additionally we believe the approach we propose maps a way
forward in the field of appearance models based on microgeom-
etry. With our new methods for differentiation and optimization,
different models can be systematically tested and compared on an
equal basis, providing a clear way to identify deficiencies in ex-
isting models and to evaluate a range of possible improvements in
order to design the next generation of models for a given material.
This general approach can be applied to other problems where it is
desirable to test the ability of a model to match measurements, but
there is a complicated global illumination process in between the
parameters and the data.

The results of our application to cloth appearance also provide
crucial knowledge about which models work best, which can be
leveraged by future work in this area. In the future our framework
can be extended to handle more cases, for instance to reason about
parameters, such as fiber radius or other geometric parameters, that
cause discontinuous changes to path contributions.
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APPENDIX

A. NORMALIZATION FACTOR FOR
LONGITUDINAL LOBE

In Section 4 the normalization factor G is a function designed to
satisfy the following energy conservation constraint:∫

π/2

−π/2
ḡ(θ ; µ,σ)cos2

θ dθ ≤ 1.

We define G(µ,σ) by approximating cos2 θ from above by a poly-
nomial Q(θ):

Q(θ) = 0.002439θ
8−0.04301θ

6 +0.3322θ
4

−0.999745θ
2 +1.0001

≥ cos2
θ ,

and setting:

G(µ,σ) =
∫

π/2

−π/2
g(θ ; µ,σ)Q(θ) dθ .

The values of G can be computed by analytically integrating the
product of a Gaussian function with a polynomial. The formula for
the integral can be found in the supplementary material.

ACM Transactions on Graphics, Vol. XX, No. XX, Article XXXX, Publication date: XXXX 2015.



18 • Khungurn, Schroeder, Zhao, Bala, and Marschner

(a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

Fleece
80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

64,64 -64,48 32,32 64,32

Gabardine
80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

64,64 -64,48 32,32 64,32

Silk
80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

64,64 -64,48 32,32 64,32

Velvet
80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

64,64 -64,48 32,32 64,32

Twill
80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

64,64 -64,48 32,32 64,32

Cotton
80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

80,80 -64,48 32,32 80,32

64,64 -64,48 32,32 64,32

Fig. 18. Results for all materials and rendering methods on fitting configurations. For all of the viewing configurations used by the fitting process, we show
(a) the photographs, (b) renderings produced by the fiber/BCSDF model, (c) renderings produced by the volume/BCSDF model, and (d) renderings produced
by the Volume/microflake model. The icons indicate the orientation of the material (bolded edges), the light source (brown), and the camera (blue); the normal
angles to the light and camera are given beneath. Comparisons across all 492 photographed configurations are in the supplementary material.

Table IV. Scattering model parameters fitted by appearance matching process for all materials and rendering models.
Material Fiber scattering model, fibers Fiber scattering model, volume Microflake, volume

CR CT T βR βT T γT T CR CT T βR βT T γT T α α γ

Fleece 0.040, 0.087, 0.087 0.452, 0.725, 0.948 7.238 10.000 25.989 0.032, 0.049, 0.055 0.759, 0.622, 0.999 3.786 10.000 21.865 0.631, 0.840, 0.972 0.137, 0.416, 0.812 0.013
Gabardine 0.185, 0.047, 0.069 0.999, 0.330, 0.354 2.141 10.000 23.548 0.110, 0.035, 0.048 0.868, 0.633, 0.592 5.034 10.000 23.902 0.993, 0.651, 0.698 0.967, 0.160, 0.230 0.013

Silk 0.745, 0.008, 0.070 0.620, 0.553, 0.562 1.000 10.000 19.823 0.992, 0.001, 0.034 0.002, 0.690, 0.570 1.000 10.000 13.900 0.940, 0.746, 0.773 0.936, 0.051, 0.214 0.013
Velvet 0.044, 0.040, 0.040 0.076, 0.058, 0.057 1.577 24.933 44.881 0.969, 0.985, 0.986 0.006, 0.003, 0.003 10.000 10.000 45.000 0.388, 0.310, 0.316 0.490, 0.381, 0.412 0.005
Twill 0.001, 0.001, 0.024 0.987, 0.975, 0.825 1.367 23.509 26.419 0.001, 0.001, 0.016 0.999, 0.999, 0.693 1.000 19.759 21.156 0.974, 0.969, 0.878 0.843, 0.812, 0.463 0.013

Cotton 0.989, 0.959, 0.874 0.999, 0.999, 0.999 1.000 27.197 38.269 0.447, 0.486, 0.251 0.171, 0.125, 0.279 10.000 10.000 41.464 0.999, 0.999, 0.999 0.999, 0.999, 0.999 0.013

Note: Parameter values that are at an extreme of their permitted range are bolded. For volumes, the density multiplier d is fixed at 4000.
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Fabric R G B

Fleece
(Training)

Fleece
(Validation)

Gabardine
(Training)

Gabardine
(Validation)

Silk
(Training)

Silk
(Validation)

+++ — Fiber/BCSDF +++ — Volume/BCSDF +++ — Volume/microflake

Fig. 19. Scatter plots of the average values of the photographs versus those of renderings of Fleece, Gabardine, and Silk. The first row of each material shows
the plots for the training configurations, which are the images in Figure 18. The second row shows those for the validation configurations, whose images are
available in the supplementary material. Because there are 492 validation configurations, we plot the contours of the points instead.
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Fabric R G B

Velvet
(Training)

Velvet
(Validation)

Twill
(Training)

Twill
(Validation)

Cotton
(Training)

Cotton
(Validation)

+++ — Fiber/BCSDF +++ — Volume/BCSDF +++ — Volume/microflake

Fig. 20. Scatter plots of the average values of the photographs versus those of renderings of Twill, Velvet, and Cotton. The setting of these plots are the same
as in Figure 19.
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Fabric φi−φo Photographs Fiber/BCSDF Volume/BCSDF Volume/microflake

Fleece 10◦

50◦

90◦

126◦

162◦

Gabardine 10◦

50◦

90◦

126◦

162◦

Silk 10◦

50◦

90◦

126◦

162◦

Velvet 10◦

50◦

90◦

126◦

162◦

Twill 10◦

50◦

90◦

126◦

162◦

Cotton 10◦

50◦

90◦

126◦

162◦

Fig. 21. Comparison between photographs and renderings produced by the three fabric rendering methods for the six fabrics. The fabric is wrapped around
a cylinder of radius 1.5cm whose axis is vertical and corresponds to the longitudinal angle θ = 0◦. The camera was fixed in all images with the light source
arranged so that its location spans from a retroreflection configuration (φi − φo = 10◦) to being close to the opposite of the camera (φi − φo = 162◦). The
longitudinal angles of both the camera and the light source were set to θ = 80◦ in all images, except those with φi− φo = 162◦ where the light source was
lifted to θ = 76◦ to avoid being seen by the camera.
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Fabric Channel 10◦ 50◦ 90◦ 126◦ 162◦

R

Fleece G

B

R

Gabardine G

B

R

Silk G

B

—— Fiber/BCSDF —— Volume/BCSDF —— Volume/microflake —— Reference photo

Fig. 22. Plots of per-column average pixel values of photographs and renderings in Figure 21 for Fleece, Gabardine, and Silk fabrics. Plots in the same
columns are to scale with one another.
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Fabric Channel 10◦ 50◦ 90◦ 126◦ 162◦

R

Velvet G

B

R

Twill G

B

R

Cotton G

B

—— Fiber/BCSDF —— Volume/BCSDF —— Volume/microflake —— Reference photo

Fig. 23. Plots of per-column average pixel values of photographs and renderings in Figure 21 for Twill, Velvet, and Cotton. Plots in the same columns are to
scale with one another.
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Fabric Fiber/BCSDF Volume/BCSDF Volume/microflake

Fleece

Gabardine

Silk

Fig. 24. Renderings of Fleece, Gabardine, and Silk fabric in a simple draped configurations. In all the images, the fabrics are draped over a black mesh to
reduce the effect of light passing through the fabrics themselves. In the first row of each fabric, the light is on the same side as the camera while, in the second
row, the light is on the opposite side.

ACM Transactions on Graphics, Vol. XX, No. XX, Article XXXX, Publication date: XXXX 2015.



Matching Real Fabrics with Micro-Appearance Models • 25

Fabric Fiber/BCSDF Volume/BCSDF Volume/microflake

Velvet

Twill

Cotton

Fig. 25. Renderings of Twill, Velvet, and Cotton in the same configurations as in Figure 24.
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