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Figure 1: We synthesize volumetric appearance models of fabrics with complex designs using a small set of exemplars: (a) density information
of exemplars obtained using micro CT imaging; (b) fabric designs specified by weave patterns; (c) rendered results using synthesized volume
data; (d) insets showing details: see, for example, blue yarns (top inset) hidden beneath the gray ones that are visible through the gaps.

Abstract

Woven fabrics have a wide range of appearance determined by their
small-scale 3D structure. Accurately modeling this structural detail
can produce highly realistic renderings of fabrics and is critical for
predictive rendering of fabric appearance. But building these yarn-
level volumetric models is challenging. Procedural techniques are
manually intensive, and fail to capture the naturally arising irregu-
larities which contribute significantly to the overall appearance of
cloth. Techniques that acquire the detailed 3D structure of real fab-
ric samples are constrained only to model the scanned samples and
cannot represent different fabric designs.

This paper presents a new approach to creating volumetric models
of woven cloth, which starts with user-specified fabric designs and
produces models that correctly capture the yarn-level structural de-
tails of cloth. We create a small database of volumetric exemplars
by scanning fabric samples with simple weave structures. To build
an output model, our method synthesizes a new volume by copying
data from the exemplars at each yarn crossing to match a weave pat-
tern that specifies the desired output structure. Our results demon-
strate that our approach generalizes well to complex designs and
can produce highly realistic results at both large and small scales.
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1 Introduction

Woven fabrics are common in everyday life and display highly var-
ied appearance, with very fine detail and subtle directional effects
that are created by the interplay of geometric structure with fiber
properties. Capturing these effects in predictive renderings for ar-
bitrary woven fabrics is a major challenge.

Realistic cloth is important for graphics applications from entertain-
ment to apparel rendering, and it is also important in textile design.
Textile designers use software such as Pointcarré [2001] to design
weave patterns for fabrics, and then drive industrial looms using the
output. However, these packages do not provide realistic previsu-
alization of the design before fabrication, thus forcing designers to
fabricate “in the dark.” Since loom time can be expensive and diffi-
cult to schedule, refining a design requires slow and costly iteration.
By providing the ability to predictively preview the appearance of
fabric designs before they are woven, we can minimize the need for
test weaving, saving considerable time, raw materials, and cost.

Volume modeling and rendering techniques [Kajiya and Kay 1989;
Perlin and Hoffert 1989] have recently been quite successful in cap-
turing the diverse appearance of fabrics [Xu et al. 2001; Jakob et al.
2010; Zhao et al. 2011]. In particular, Zhao et al. [2011] built vol-
umetric models for fabrics using yarn and fiber geometry informa-
tion from micro computed tomography (CT) imaging and optical
information from a photograph. For materials with simple repeat-
ing structure and a single type of yarn, they tiled the volume data
to produce large areas of fabric, with highly realistic results. The
key to this approach is to accurately model the geometric structure
of the surface layer of the cloth, from which the many appearance
phenomena of different fabric types emerge automatically. How-
ever, this method is limited to materials containing only a single
type of yarn, and it can only reproduce the exact material that was
scanned. But real fabrics are complex—including intricate weave
patterns, large scale designs, and multiple yarn types for warp and
weft, each with its own reflectance; ideally, flexibility to render
such fabrics is desired. Further, in design applications, the real use-
fulness of rendering comes from predicting the appearance of new
fabrics that have not been scanned.

1

http://doi.acm.org/10.1145/2185520.2185571
http://portal.acm.org/ft_gateway.cfm?id=2185571&type=pdf
http://www.cs.cornell.edu/projects/ctcloth/


Appears in the SIGGRAPH 2012 Proceedings.

This paper presents a new technique to create volumetric models
of fabrics with complex, spatially varying structures and to predict
the appearance of specific weave patterns. A small set of exemplars
obtained from micro CT scans of simple fabrics are used to model
new fabrics defined by 2D binary images representing each fabric’s
weave structure. Our structure-aware volume synthesis algorithm
efficiently copies regions of the exemplars to assemble a volumetric
model that matches the fabric’s structure, without visible seams or
periodic patterns.

We demonstrate our technique with synthesized results for a range
of common structures that convey very different appearance. In
some cases we use real weave patterns and compare to photographs
of samples woven from the same patterns, and in other cases we use
patterns generated to achieve a particular rendered appearance. This
work can have impact on graphics applications in entertainment, e-
commerce and apparel visualization, and textile design.

2 Related Work

2.1 Cloth modeling and rendering

Several methods producing procedural textures with BRDFs
[Gröller et al. 1996; Adabala and Magnenat-Thalmann 2003; Ad-
abala et al. 2003; Irawan and Marschner 2012] have been devel-
oped to simulate cloth with a variety of weave patterns. Drago and
Chiba [2004] proposed a method to procedurally model different
kinds of woven canvases using spline surfaces. Like ours, these
methods account for the cloth’s weave pattern and produce texture
at scales where yarns are visible, but the level of realism produced
is less than with the detailed volume models we use.

In addition, many techniques have been developed for acquiring and
modeling spatially varying BRDFs [Marschner et al. 2005; Wang
et al. 2008; Ghosh et al. 2009; Dong et al. 2010; Ghosh et al. 2010].
In particular, Wang et al. [2008] and Dong et al. [2010] both use
BRDFs based on tabulated normal distributions to represent a vari-
ety of materials including a Jacquard silk satin. These models do
an excellent job capturing the spatially varying anisotropy of the
material, but resolution is limited to that of the photos used for cap-
ture. Also, only captured fabrics can be represented; they are not
intended for rendering new fabrics.

Gröller et al. [1995] proposed a volumetric approach for modeling
knitwear. Xu et al. [2001] introduced lumislice rendering, a pro-
cedural volume modeling method, to synthesize realistic close-ups.
These methods addressed knits, rather than wovens, and did not
consider fabrics with complex designs. Also, using a procedural
model with only isotropic scattering limited the realism and range
of materials that could be handled.

Commercial textile design software packages, such as Point-
carré [2001], include proprietary visualization tools, but these are
generally 2D and mainly limited to predicting the overall color of
the material, not its complete appearance.

Jakob et al. [2010] proposed a general framework for simulating
light scattering within anisotropic media including cloth, along with
the microflake model for phase functions in such media. Using this
model, a piece of cloth can be represented with a volume in which
each voxel contains four parameters: material density, local fiber
orientation, single-scattering albedo, and fiber alignment. The first
two parameters describe the geometric structure; the last two pro-
vide optical properties of the yarns.

Zhao et al. [2011] developed an approach that builds microflake
models for fabrics using micro CT imaging. We build upon their
method, using similar scans of a small set of exemplars, rather than

just one fabric, and provide a mechanism to produce models of a
wide variety of fabrics from this input.

2.2 Synthesis

Example-based texturing. There is a large body of work in the
field of texture synthesis. For a comprehensive survey, see [Wei
et al. 2009]. Example-based texture synthesis techniques create
a large output texture using small exemplars. Those algorithms
can be performed based on pixels [Heeger and Bergen 1995; Efros
and Leung 1999; Wei and Levoy 2000; Lefebvre and Hoppe 2005]
or patches [Cohen et al. 2003; Efros and Freeman 2001; Kwatra
et al. 2003; Wu and Yu 2004] and can also synthesize solid tex-
tures [Kopf et al. 2007]. Some texture synthesis algorithms take
additional constraints [Ashikhmin 2001; Kwatra et al. 2005; Ra-
manarayanan and Bala 2007], but the forms of such constraints are
quite different from the one in our problem. Many approaches in-
cluding [Ashikhmin 2001] also aim at preserving continuity across
synthesized pixels. But the optimizations are normally performed
locally and do not ensure global continuities.

Synthesizing appearance/geometry. Several approaches syn-
thesize polyhedral meshes [Merrell and Manocha 2008], voxelized
volumes [Zhou et al. 2006], and appearance models [Tong et al.
2002; Chen et al. 2004] onto arbitrary surfaces. However, all these
methods focus on a very different problem: extending complex
exemplars over a non-trivial domain. The technique proposed by
Zhou et al. [2006], in particular, includes a deformation step to
solve a similar problem as the one introduced in Section 5.5. Un-
fortunately, this method needs to be performed at the voxel level
and thus does not scale to the size of our problem.

Discrete element synthesis. Recently, techniques that fill a vol-
ume with a set of discrete elements have been proposed [Hurtut
et al. 2009; Ma et al. 2011]. Like texture synthesis, these methods
usually do not support constraints, or they take constraints that are
quite different from ours. And as the name suggests, the basic ele-
ments in these methods are “disconnected” from each other, which
is not the case in our problem.

3 Background

Weaving is a process of interlacing two perpendicular sets of yarns,
called the warp and the weft, to form a fabric. During the weav-
ing process, warp yarns are fixed to the loom while weft yarns are
inserted crossways, and different subsets of warp yarns are raised
above or lowered below each inserted weft yarn so that the yarns
become interlaced and the fabric holds together into a sheet by fric-
tion. In this paper, we follow the convention that warps go vertically
and wefts horizontally.

Depending on the pattern in which warps are raised, fabrics with
very different appearance and mechanical properties are produced.
The pattern is described very simply using a binary image called a
weave pattern, with the number of columns and rows equal to the
number of warps and wefts in the cloth; a black pixel means the
warp is above the weft at the corresponding yarn crossing, while
white means it is below. Depending on the mechanics of the loom,
only certain kinds of patterns may be achievable, but in the most
general case of Jacquard looms, every yarn crossing is individu-
ally controlled by a computer. Figure 2 shows four different weave
patterns from the twill and satin families that we use as exemplars.

Twill is one of the most common weave patterns, in which each row
is shifted by one yarn from the previous row. As shown in the top
row of Figure 2, fabrics created with twills convey characteristic
diagonal lines. Simple twills are denoted “m/n twill” meaning a
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Figure 2: Example weave patterns: twill (top two rows), satin (bot-
tom two rows); (a) weave patterns and the corresponding 2D illus-
trations where warps and wefts are respectively drawn in black and
green; (b) CT data of fabric samples with the same weave patterns;
(c) colored visualizations of the CT data; (d) a photograph of our
example fabric in which the four examples used in this figure are
marked with blue rectangles.

warp goes over m wefts, then under n wefts, then repeats. A twill
pattern that repeats every k yarns is called a “k-end twill” or just
“k-twill.” The two 5-twill patterns shown in Figure 2 are 2/3 twill
and 4/1 twill.

As opposed to twill, satin weaves shift each row by more than one
yarn, with the aim of creating a more distributed pattern that does
not call attention to the repeating structure. Satins build smooth
surfaces and can be used for creating fabrics with glossy appear-
ance. Satins are named in the same way as twills; the bottom rows
of Figure 2 show a 2/3 and a 4/1 satin. Much larger satin patterns
are often used with fine yarns when a glossy surface is desired.

In Jacquard fabrics with many-colored graphic patterns, the variety
of available colors can be increased by using a multi-layer weave, so
that some yarns can be hidden at the back of the cloth in areas where
their color is not desired on the surface. The structures of double-
and triple-cloth fabrics can be intricate, but for our purposes we are
primarily interested in the yarns visible on the surface. Therefore
in this work we treat cloth as if it were single-layered, with yarns
that can change color along their length. In reality, of course, yarns
do not change color but rather are substituted with other yarns that
were previously hidden on the back, but the errors induced by this
simplification are subtle.

4 Overview

The goal of our cloth modeling process is to produce volume mod-
els of woven materials, suitable for realistic close-up renderings,
from two inputs: a description of the material to be simulated, and
a few examples of similar but simpler fabrics. Our system accom-
plishes this in two phases. In the first phase, which only needs to be
done once for a whole class of materials, CT scans of the example
fabrics are used to build exemplars that contain all the information
needed to synthesize large areas of complex fabrics. In the second
phase, which is done once per material to be simulated, the exem-
plars are used in a new structure-aware volumetric texture synthesis
method to synthesize a volume model according to the colors and
weave pattern of the target material.

Exemplar creation phase. The purpose of the exemplar creation
phase is to turn raw volume data into a database that can be used to
synthesize volume models of a range of fabrics that are made from
materials similar to the example materials, but have different struc-
ture. Normally the example materials are a set of simple weaves
made using particular types of yarns.

As input we assume volume data showing the geometric structure
of the input fabric. While other data sources, such as magnetic res-
onance imaging (MRI), could be used, in this paper we focus on
volume datasets that come from CT scans. Thus, our input is the
raw volume containing density information on a fine voxel grid cov-
ering a small patch of a fabric. High resolution scans are required to
resolve fiber orientation and flyaway fibers, so each scan observes
an area on the order of 5mm across, which, after cropping, typically
produces exemplars with about 6× 9 yarn crossings.

A processing pipeline takes this data and produces output by de-
noising the input density data, automatically tracking yarns in the
data to detect the yarn trajectories, segmenting the voxels to match
them to the appropriate yarns, and then automatically detecting the
pattern of yarn crossings.

Each exemplar in the resulting database includes a voxel grid (con-
taining density, fiber orientation, and yarn ID) and a small binary
image representing the weave pattern. Section 6 gives details.

Synthesis phase. The input describing a new fabric to be sim-
ulated includes a 2D binary array giving the weave pattern for the
whole cloth, and 2D arrays specifying the type of warp and weft
yarn present at each yarn crossing. The synthesis phase, detailed
in Section 5, creates an output volume that respects the input spec-
ification while displaying local structure and details that match the
exemplars.

How the fabric specification will be created depends on the appli-
cation. When predicting the appearance of a new fabric as part of
the textile design process, this description can be extracted directly
from the actual design, using the data that would be sent to the loom
to make the fabric. In a graphics context, the weave and color pat-
tern can be computed from a posterized image by a very simple
process, since the constraints of actual weaving do not need to be
observed, as described in Section 5.2.

5 Structure-aware Synthesis

Given appropriate exemplars, structure-aware synthesis produces a
detailed model of a fabric from a description of the required design.

5.1 Input Specification

The input to our algorithm (Figure 3) consists of three components:
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Figure 3: Inputs to our algorithm: (a) shows the weave pattern; (b)
and (c) show warp and weft ID maps encoded in colors, indicating
that all but the left-most warp share the same optical properties
while all wefts are identical; (d) illustrates the visible yarn ID at
each crossing.

1. A binary imageW representing the weave pattern, where each
binary value represents a yarn crossing.

2. A 2D array specifying the warp and weft types, represented
with IDs, for every yarn crossing.

3. Color and gloss information for each type of yarn.

As discussed in Section 3, we model multilayer weaves by allowing
a single warp or weft to change color along its length. This also
provides flexibility in graphics applications where the cloth need
not be manufacturable, because the color constraints of the actual
weaving process can be discarded if desired. For this reason the
yarn color arrays are two-dimensional rather than one-dimensional.
In reality, there are usually no more than ten different kinds of yarns
in a fabric.

5.2 Input Data Creation

The input above can be created in several ways. A textile designer
would normally use design software such as Pointcarré [2001] to
design a new material, and the software can simply output the re-
quired binary weave pattern and yarn color information.

For applications where constraints of producing actual cloth are less
of a concern, the following simple method mimics the design pro-
cess. Begin with a posterized image I and a set of q different ele-
mentary weave patterns V1, V2, . . . , Vq (repeated until they match
the size of I) associated with warp and weft ID maps. Note that the
set of elementary patterns can be arbitrary and does not need to be
contained in our exemplar database. Let the set of discrete colors in
I be P . The user then assigns a weave pattern to each of the colors
by specifying a mapping p : P 7→ {1, 2, . . . , q}. To produce the
patterned cloth, take each pixel from that of one of the elementary
weave patterns as follows: W (x, y) = Vp(I(x,y))(x, y).

5.3 Synthesis at the Yarn Level: The Problem

The goal of our synthesis process is to generate a large volume
matching the given weave pattern. At the voxel level, the prob-
lem is to solve for the value of each voxel of output. Since the
total number of voxels can be very large (a 1m× 1m× 2mm cloth
sampled at 5µm resolution has 1.6 × 1013 voxels), computing or
even storing the solution is costly and must be avoided. At the yarn
level, the algorithm instead considers one pixel in the weave pat-
tern (which represents a warp-weft yarn crossing) at a time, and
“copies” the corresponding volume data, which we call a block, by
referencing a rectangular box in an exemplar volume. This is much
more tractable, so given the costs involved, we solve the problem
at the yarn level, and then apply a post-process to effectively adjust
the data at the voxel level to get a high quality synthesized result.

The core problem of the yarn-level synthesis process is to locate
a block in the exemplar volumes for each pixel in the weave pat-
tern to copy its volume contents from. Let A be a weave pattern

Figure 4: Synthesized results using (top) naive algorithm, (middle)
greedy algorithm, (bottom) our approach: the left column shows
renderings using synthesized models; the right column shows from
which exemplar each block copies its content (encoded in false col-
ors).

associated with a volume Ã, and let Ã(i, j) denote the block in Ã
corresponding to pixel A(i, j). Then the yarn-level synthesis prob-
lem can be formulated as follows: given a set of k example weave
patterns {S1, S2, . . . , Sk} associated with k exemplar volumes and
a target pattern W , determine an assignment function c : N2 7→ N3

where c(i, j) = (u, x, y) indicates that W̃ (i, j) copies its data from
S̃u(x, y). Note that c can be implemented simply as a 2D array.

One possibility is to randomly copy blocks that have the desired
yarn (warp or weft) on the top, by assigning c(i, j) a random triple
(u, x, y) under the constraint that W (i, j) = Su(x, y). Unfortu-
nately, this works poorly, as shown in the top row of Figure 4, since
there is no consistency across block boundaries. The shape of the
yarn passing through a given block is affected strongly by whether
it passes under or over the next yarn, and for this reason it is crit-
ical to ensure that the binary values of the four neighboring pixels
match when selecting an exemplar block to copy.

Thus our method follows three principles when selecting an exem-
plar block for each output block, enforcing them in priority order:

1. Correctness. The correct yarn (warp or weft) must be on top.

2. Consistency. The four neighbors in the desired weave pattern
should match the neighbors in the exemplar’s weave pattern.

3. Continuity. Choices that copy neighboring blocks in the ex-
emplar into neighboring blocks in the output are preferred.

Next we define the term consistency. For every element (i, j) →
(u, x, y) of c, which we call an assignment, consider the four neigh-
bors of W (i, j) and Su(x, y). If all these neighbors match in bi-
nary values, we say the mapping is consistent. Unfortunately, it is
not always possible to find c such that all assignments are consis-
tent. Thus the problem can be described as an optimization: find an
assignment function such that the total number of matches is max-
imized. Figure 5 shows an example where the block in S̃3 maxi-
mizes the number of matching neighbors.

Note that to maximize the total number of matches, the choice for
one assignment is independent of that for another. This fact sug-
gests a greedy algorithm: for each pixel W (i, j), select the triple
with the maximum number of matches. Although this simple al-
gorithm can generate much better results (see the middle row of
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Synthesized Volume W̃Input Weave Pattern W

S1 S2 S3 S̃1 S̃2 S̃3

W (i, j)
W̃ (i, j)

Figure 5: The block in S̃1 is not a valid candidate since it does not
satisfy the correctness constraint; the blocks in S̃2 and S̃3 satisfy
the constraint and respectively have 2 and 4 matching neighbors.

Figure 4), it does not provide local continuity since the algorithm
does not know how to break a tie when there are multiple candi-
dates with the same number of matches. This is unfortunately a
very common situation over uniform regions of a fabric.

Given an assignment function c, let the continuity at (i, j) be the to-
tal number of immediate neighbors (i′, j′) satisfying the following
conditions: let c(i, j) = (u0, x0, y0) and c(i′, j′) = (u1, x1, y1),
then u0 = u1 and

(x1, y1)− (x0, y0) = (i′, j′)− (i, j).

Our problem is to find an assignment maximizing the total consis-
tency, using the total continuity to break any ties.

5.4 Synthesis at the Yarn Level: Our Algorithm

While matching consistency can be done using a greedy algorithm,
maximizing the total continuity on a 2D grid is in general a very
hard combinatorial optimization problem. Fortunately, the 1D ver-
sion of this optimization problem, where continuity is defined by
considering the two immediate neighbors for each yarn crossing,
can be solved efficiently. And our experiments indicate that solv-
ing the 1D problem for every column (along the warps) is a good
approximation of the 2D problem when handling weave patterns.

For convenience, we associate a unique index to each triple
(u, x, y) used by the assignment function c. Beyond this point, we
assume that c(i, j) returns a single integer instead of a triple.

For a column y0 in the weave pattern, let f(i, t) denote the max-
imal total continuity for the first i rows in this column under the
constraint that c(i, y0) = t. And f(i, t) is defined only when t
maximizes consistency at W (i, y0). To compute f(i, t), we can
solve recursive sub-problems over the first (i − 1) rows, namely
computing f(i − 1, t′) for all feasible t′ values, and then pick the
best one to form f(i, t) by computing

f(i, t) = max
t′
{f(i− 1, t′) + gain(t′, t)} (1)

where gain(t′, t) captures the 1D continuity and equals 1 if t′ and
t come from the same column of one exemplar volume and t′

lies next to t and 0 otherwise. The base case of this recursion is
f(0, t) = 0 for all t.

Note that the total number of states is polynomial, and this opti-
mization problem can be solved efficiently using dynamic program-
ming. Figure 6 illustrates the process of computing f(i, t) by enu-
merating t′ values.

Synthesized Volume

t3

Exemplar Volumes

i blocks

t1

t0

t2

Figure 6: The dynamic programming process: computing f(i, t0)
by enumerating different possible t′ values using Equation 1. For
example, here we have gain(t1, t0) = 1 whereas gain(t2, t0) =
gain(t3, t0) = 0.

Algorithm complexity. Given a target weave pattern of size
M × N , and k example weave patterns each of size m × m, the
dynamic programming algorithm runs inO(km2MN) time. In our
experiments, m = 5, k = 8, and M , N can be as large as several
thousands.

Algorithm optimization. Many basic weave patterns are transla-
tionally symmetric: each column is a translated version of the pre-
vious one (with wrapping around the edges). It therefore suffices to
consider just one column, reducing the time to O(kmMN).

Randomization. The above optimization could result in a loss in
variation by not considering the other m − 1 columns. Further,
a side effect of maximizing local continuity is that it may create
periodic patterns. To solve this problem, we randomly shift each
block based on translational symmetries of the corresponding ex-
emplar. And we shift every m̂ × m̂ block by the same amount to
avoid destroying the continuity obtained by solving the optimiza-
tion problem. Since m = 5 in our experiments, we have picked
m̂ = 3.

Discussion. The 1D dynamic programming can be also per-
formed along the weft direction or even alternating between the two
directions. In our experiments, these schemes all produced very
similar results. This is because the input weave pattern itself has
strong 2D structure, and the 2D neighborhoods greatly restrict the
set of candidate blocks at each yarn crossing. As shown in Figure 4,
our algorithm provides good continuity in both directions.

5.5 Edge Fixing

Recall that each block represents one warp-weft yarn crossing.
When two adjacent blocks copy their contents from disconnected
blocks, visible seams may be created, as shown in Figure 9. We in-
troduce an efficient method to fix the seams by shifting entire stacks
of voxels along the Z direction.

Fixing a Single Block. Figure 7a illustrates the 2D case where
both blocks contain a single yarn and there is a seam on the edge
between them. Assume that the right end of yarn 1 and the left end
of yarn 2 have depths h1 and h2, respectively. Then the seam can
be fixed by shifting up yarn 1 by ∆h := (h2 − h1)/2 on the right,
and yarn 2 by (−∆h) on the left.

Block 1 Block 2 Block 1 Block 2

h1
h2

Yarn 1 Yarn 2 Yarn 1
Yarn 2

(a) (b)

Figure 7: Fixing the edges by moving stacks of voxels.
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Figure 8: Edge fixing: constructing matrices T and L. The struc-
ture of block i is shown in the middle, and assume that the blocks to
its right and bottom are respectively block j and k.

For the 3D case, the desired amount of shifting is defined along the
2D boundary of each block. However, only shifting the boundary
stacks will create new seams. We also need to update the inner
stacks so that the entire adjustment is smooth. We do this smooth
adjustment of depths by solving a 2D discrete Poisson equation.

Note that we focus on matching the top-most yarns. In the case of
a multi-layered fabric, this may cause errors (seams) for the yarns
underneath. Fortunately, they can be safely ignored since we cannot
see those yarns directly and the amount of shifting involved by this
process is generally much smaller than the radius of a single yarn.

Fixing All Blocks. Although fixing one block is relatively easy,
given that the total number of blocks is in millions, the time and
storage needed to compute and store the solutions become pro-
hibitive. However, the problem can be solved efficiently if all
blocks have identical resolutions b1 × b2 × b3, which is normally
the case if the fabric samples are scanned using the same resolution.

For every block, say block i, let the boundary condition defined on
its upper edge be ti and that on its left edge be li. Stack all t and l
vectors as columns to form two matrices T and L with dimensions
b1 ×MN and (b2 − 2)×MN , respectively. The boundary condi-
tions defined on a block’s right and bottom edges can be represented
using those on its right neighbor’s left edge and bottom neighbor’s
top edge, so they do not need to be stored. Figure 8 illustrates this
process.

Next, we compute rank-r approximations for the matrices T and L:
T ≈ BT × CT ; L ≈ BL × CL where BT , BL respectively have
dimensions b1×r, (b2−2)×r, whileCT ,CL are both r×MN . In
our experiments, r is picked manually and equals 15. Then we solve
the 2r Discrete Poisson equations whose boundary conditions are
given by each column of BT and BL (and setting all other edges to
0). We store the solutions sTt and sLt for t = 1, 2, . . . , r. It follows
that the solution of the Poisson equation defined on each block is
(approximately) a linear combination of the stored values, since the
solution of a Poisson equation is a linear function of the boundary
condition.

For block i, assume its right and bottom neighbors are block j and
k, respectively. Then the solution si at block i equals

r∑
t=1

(
CT (t, i) sTt + CL(t, i) sLt − CT (t, k) s̃Tt − CL(t, j) s̃Lt

)
where s̃Tt and s̃Lt are the vertically and horizontally mirrored copies
of sTt and sLt , respectively.

In our implementation, we precompute CT , CL, sTt , sLt and obtain
si at runtime. In our experiments, storing this information takes
roughly 150 MB of space. Finally, when the voxel contents at loca-
tion p = (px, py, pz) need to be fetched, we adjust pz by si(px, py)
before performing the volume lookup.

We have shown how to synthesize the volume data using several

Periodic Patterns Seams

Figure 9: Randomization and edge fixing: (left) maximizing consis-
tency and continuity without randomization results in periodic pat-
terns; (center) introducing randomization removes such patterns;
(right) edge fixing significantly improves the seams.

exemplars. Next we will provide the details on creating those ex-
emplars.

6 Exemplar Creation

In this section we describe our pipeline of CT image processing.
The goal is to create a set of exemplar volumes in which each voxel
contains three parameters: material density, local fiber orientation,
and a yarn ID. The material density and fiber orientation can be
passed directly to the microflake model [Jakob et al. 2010], and the
ID can be used to tell the type of yarn (warp or weft) and then ob-
tain the corresponding optical information from the input images.
This information combined yields a complete volumetric appear-
ance model which can then be rendered.

This stage starts with a basic processing step following [Zhao et al.
2011] which takes raw CT data and produces density and orienta-
tion information for each voxel. Next we compute per-voxel yarn
IDs and regularize the exemplar volumes.

6.1 Yarn Tracking

To obtain the yarn ID for each voxel, we reconstruct the center
curve, a discrete line strip, for each yarn in the volume; this pro-
cess is called yarn tracking.

Tracking. Given a yarn passing 3D point p, we can track it by
iteratively computing the tangent direction t at the current location
and moving in that direction by a small step d. The tangent direction
t can be computed by averaging the local fiber orientation over a
small region around p:

t = normalize

 ∑
v∈Vp,t0

ωf (v)


where t0 is the tangent direction computed in the previous iteration,
ωf (v) is the local fiber orientation at v, and Vp,t0 is a volume
around p defined by

Vp,t0 =
{
v ∈ R3 : ‖v − p‖2 ≤ R and |ωf (v) · t0| ≥ c0

}
where d and c0 are constants representing the size of a yarn (in
voxels) and its degree of deformation. In our experiments, d = 15,
c0 = 0.7, andR respectively equals 20 and 30 when tracking warps
and wefts.

If the input orientation field contains too much noise, the estimated
t0 will be inaccurate, which may cause the tracking step to fail. We
therefore need to ensure that the CT scans have not only sufficient
resolution but also acceptable signal-to-noise ratio, which can be
ensured by using longer exposures.
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Figure 10: Center correction: (left) without the correction, the
tracking that starts from the left fails due to the yarn center leav-
ing the volume; (right) with the correction, the tracking process
becomes more robust.

Endpoint Detection. To start the tracking process, an endpoint of
every yarn is needed. We detect the endpoints automatically using
K-means clustering (with the total number of clusters as user input).

We assume that the warps approximately go vertically (along the Y -
axis) while the wefts run horizontally. This can be easily satisfied
by roughly aligning the samples during the scanning process. Also,
we assume that the user knows the number of warps and wefts in
the scanned volume.

To detect the warp centers on a 2D slice perpendicular to the Y -
axis, we perform a K-means clustering among those voxels on the
slice whose fiber orientations are close enough to the Y direction;
the center of each cluster indicates the warp centers. Similarly, the
centers of the wefts can be detected by running the same algorithm
for any slice perpendicular to the X-axis.

Note that the computed yarn centers can be unreliable: noise and
voxel orientation errors can result in poor accuracy. We therefore
run this process for every slice along each axis and pick the one
which minimizes the maximal cluster radius.

Correction. Tracking a yarn by simply following the tangent di-
rection causes p to leave the yarn in highly curved regions. There-
fore, we introduce a correction step after each tracking iteration.
Every time p is updated with (p + d · t), we iteratively move p to
the center of mass of a small volume around it:

p←
∑

v∈Sp,t
ρ(v) · v∑

v∈Sp,t
ρ(v)

where ρ(v) denotes the material density at v, Sp,t is a 2D region
surrounding p on the slice which is perpendicular to the main di-
rection of the yarn and contains p. In our experiments, we made
Sp,t elliptical to provide more freedom for p to move along the Z-
direction while preventing it from accidentally jumping to a neigh-
boring yarn. As shown in Figure 10, the correction step signifi-
cantly stabilizes the tracking process.

Discussion. Shinohara et al. [2010] proposed a similar yarn
tracking approach. However, their method requires the user to en-
ter the endpoint for each yarn and does not have the correction step
which has proven crucial for tracking the yarns in our experiments.

6.2 Weave Pattern Detection

With the tracked yarns in hand, we would now like to infer their
associated weave pattern. For each yarn crossing, this entails de-
termining whether the weft passes above or below the warp. Math-
ematically, this property is captured by the linking number of the
yarn curves [Rolfsen 2003]. Reminiscent of the winding number in
two dimensions, the linking number counts the signed number of
times a space curve wraps around another. Given parameterizations
p1(t1) and p2(t2) : [0, 1] → R3 of a warp and weft, respectively,
we numerically compute their linking number using the Gaussian
linking integral

L1↔2 =
1

4π

∫
[0,1]2

〈
p1(t1)− p2(t2)

‖p1(t1)− p2(t2)‖32
,
∂p1

∂t1
× ∂p2

∂t2

〉
dt1dt2

Assuming that the warps and wefts are parameterized so that the
projection of their tangents into the plane of the weave pattern
forms a positively oriented basis of R2, we assign the value 0 to
this yarn crossing if L1↔2 > 0 and 1 otherwise.

Using this technique we can automatically detect weave patterns
for single-layered fabrics. For those with multiple layers, we must
manually reason about the layered structure to find the top-most
yarn for each weave grid location before computing the linking
number.

6.3 Voxel Segmentation

Based on the tracked yarns, we can tell which yarn each voxel
belongs to. This information is needed in the later steps of the
pipeline. For each voxel, we assign it to the yarn whose center
curve minimizes the distance to the voxel. Note that because the
warp and weft yarns have different radii and stiffness, this simple
approach can cause small errors at the yarn crossings. Those errors,
however, are hardly visible in rendered results since they are hidden
beneath the surface.

6.4 Volume Alignment

Since the samples are not perfectly registered during the scanning
process, they need to be aligned before being used for synthesis.

We solve for a global rotation around the Z-axis for each scanned
dataset. For the yarn i, let Yi be the set of voxels it contains. We
perform PCA on {(vx, vy) : v = (vx, vy, vz) ∈ Yi} to detect
the principal direction of the yarn. Let ω0 and ω1 be the average
principal directions of the warps and the wefts respectively. We
rotate the whole volume around the Z-axis so that (ω0 + ω1)/2
matches the diagonal line y = x.

6.5 Weaving Grid Registration

Given a volume with the associated weave pattern, we need to crop
out the incomplete yarns on the boundary and make the remaining
part aligned with the weaving grid. This sub-yarn level registra-
tion is crucial for the quality of synthesized data since our algo-
rithm works at the yarn level and may copy incomplete parts of
yarn crossings if the yarns are not centered in the blocks.

We first estimate the size (w, h) of the crop window by multiplying
the number of complete yarns and their average sizes. Then the
problem becomes that of finding a translation (x, y) such that the
content in the crop window agrees with the weave pattern best.

Assume that the scanned volume has size s1×s2×s3. We compute
an s1 × s2 binary image b in which b(i, j) is set to 0 if the topmost
non-blank voxel located at (i, j) is part of a warp yarn and 1 oth-
erwise. For each grid in the window corresponding to one pixel in
the weave pattern, we assign it a score that equals the fraction of
pixels in b that agree with the weave pattern value. The best crop
window maximizing the total score of all grids can be computed in
O(s1 · s2) time using a summed area table.

For our scanned data, s1 = s2 = 1000, s3 = 300, w = 575, and
h = 350. Using this configuration, each cropped volume contains
5 × 5 yarn crossings. Thus every block has the resolution 115 ×
70× 300.

6.6 Summary

We create our exemplar database by taking the processed CT data,
tracking the yarns, computing per-voxel yarn IDs, detecting the
weave pattern, and regularizing the volume. Our pipeline requires a

7



Appears in the SIGGRAPH 2012 Proceedings.

(a1) (a2) (b1) (b2)

(c1) (c2)

Figure 11: Comparisons between photographs of fabricated cloth
samples (left) and rendered images with the synthesized data
(right): (a) a Herringbone fabric; (b) a fabric containing all 9-twill
patterns; (c) a Jacquard fabric (design courtesy of Brooks Hagan).

small amount of user input including the thresholds for tracking, the
number of yarns for endpoint detection, yarn grouping for weave
pattern detection, and the resolution of a single block for weaving
grid registration. For creating each of our exemplars, the entire pro-
cess (excluding the basic processing step from Zhao et al. [2011])
runs in seconds.

7 Experimental Results

We show two types of results to demonstrate our technique: com-
parisons of our synthesized results with real fabricated cloth sam-
ples, and new designs synthesized using our algorithm. Our render-
ings are generated using Monte Carlo volume path tracing imple-
mented in the Mitsuba renderer [Jakob 2010].

First, to demonstrate the accuracy of our approach, we compare our
results with real fabricated cloth samples. Several designs, includ-
ing a “test blanket” of 5-twill and 5-satin example patches (shown
in Figure 2d), were woven on an industrial Jacquard loom (see Fig-
ure 12) at Rhode Island School of Design (RISD). Solving for the
optical properties of multiple kinds of yarns in a fabric is beyond
the scope of this paper, so we manually picked colors for the black
warp and green weft to obtain a rough match in appearance.

The results demonstrate our ability to correctly predict the structure
and overall appearance of woven fabrics before they are fabricated,
meaning that our methods are useful for textile designers who cur-
rently design “in the blind” without seeing any realistic preview of
the cloth before fabrication.

We first pick two example weaves, Herringbone and a 9-twill pat-
tern, that are not in our input set of exemplars, thus demonstrating
the power of our approach to generalize to complex weaves. These
are shown in Figure 11ab (in the 9-twill results, the fabric is ro-
tated by 90◦ with the wefts going vertically). While our results
are more regular than the photo, we successfully capture the key
structure of both patterns. As shown in Figure 4, our algorithm
copies big chunks of data if similar structures are contained in the
database (the orange region) and synthesizes other regions from
smaller pieces. Note that we are not allowed to rotate the exem-

Figure 12: The industrial Jacquard loom at Rhode Island School
of Design used to weave our samples: (a) harnesses used to lift the
warps; (b) the warp yarns; (c) spools of multi-colored weft yarns;
(d) the shuttle for carrying and inserting wefts.

plars, because the warp and weft yarns are dissimilar, or to mirror
them, because that would reverse the twist of the yarns, destroying
the consistency of local fiber orientations.

Next we synthesized a model using the weave pattern that was used
to weave the Jacquard sample. Figure 11c shows a comparison be-
tween our synthesized result and the real sample.

Finally, Figure 13 show more results synthesized using our tech-
nique and mapped to arbitrary surfaces using shell mapping [Po-
rumbescu et al. 2005] following the approach of Zhao et al. [2011].
In each image the weave pattern or the posterized image used to
create the weave pattern is shown at the top left corner, and magni-
fied insets appear at the bottom right. Please see the accompanying
video for animated renderings.

All weave patterns used to synthesize these results have the resolu-
tion of 900×1500. Our synthesis algorithm runs in no more than 10
seconds to create each output volume containing 3.26×1012 effec-
tive voxels. Each rendered image has the resolution 2560 × 1440,
and the rendering time varies from 15 to 40 minutes on a QSSC-
S4R Intel Server with 32 logical cores.

Figure 13a shows a fabric created with a 96×96 wavy twill pattern.
This input is very different from the patterns in our exemplar set;
thus it is difficult to copy large pieces of continuous structure. Our
approach does a good job of synthesizing the fabric with smooth
shading across the surface.

In Figure 13b, we show a fabric containing alternating 1/15 and
15/1 satin blocks with all yarns assigned identical optical proper-
ties. This kind of same-color patterning is often used in fabrics for
bed linens and draperies. Because the yarns go in perpendicular di-
rections, the fabric has highly anisotropic appearance. By correctly
synthesizing the structure of the yarn we are able to automatically
capture this characteristic appearance. In addition, 3D structures
created by the transitions between the two weave patterns can be
easily observed even at a large scale.

Figure 13c shows a Jacquard cloth with 1/7 twill and 7/1 satin re-
spectively forming the golden and the red area. The posterized
image used to generate the pattern is shown on the upper-left.
Again, the different structure of the two weaves results in distinctive
anisotropic behavior that is captured well by our method.

Figure 13d shows a complex Jacquard cloth with two weft colors
(white and golden). The design is provided as an example in Point-
carré [2001]. The synthesized result conveys a richly detailed sur-
face structure.

8 Conclusion and Future Work

We have demonstrated an approach to generate highly realistic vol-
umetric models with spatially varying appearance and complex de-
signs. Unlike previous techniques like BTFs, our method can pro-
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Figure 13: Synthesized results with different weave patterns: (a) a wavy twill; (b) a fabric composed using alternating blocks with 1/15 and
15/1 satin patterns; (c) and (d) Jacquard brocades mapped onto pillows. Top-left: weave patterns, Bottom-right: insets.

duce fabrics with different designs using a fixed set of exemplars.
Our approach takes advantage of micro CT imaging to measure
highly detailed 3D structure and introduces a synthesis process to
generalize the measured data to model fabrics with complex larger-
scale structures. Our contributions include a robust pipeline for
rapidly creating exemplars for fabrics, and a fast synthesis algo-
rithm to create complex volumetric models. We have validated our
synthesized results by comparing them to fabricated real samples.

We believe that this technique is very useful for both the computer
graphics community and the textile design community. Using our
exemplars, users can now create high quality fabric models with
their own designs without having to write specialized code. And
textile designers can use our approach to predictively visualize their
designs without physically creating them.

There are multiple areas of future work. One limitation of our cur-
rent work is that our method can only synthesize models with a
grid-like weave structure. Although such structure is very common
in real-world fabrics, those of other cloth (such as knitwork) are
different. We would like to extend our framework to support more
structures and ultimately go beyond fabrics. For more automated,
predictive rendering of existing fabrics, better appearance match-
ing methods that solve for the optical properties of multiple kinds
of yarns are needed. Finally, better optical models may be required
to perfectly match the appearance of fabric samples.
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GRÖLLER, E., RAU, R. T., AND STRASSER, W. 1995. Modeling
and visualization of knitwear. IEEE Transactions on Visualiza-
tion and Computer Graphics 1, 4, 302–310.
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