
Civitas: Implementation of a Threshold
Cryptosystem

Adam M. Davis Dmitri Chmelev Michael R. Clarkson

{amd16,dc566,clarkson}@cs.cornell.edu
Department of Computer Science

Cornell University

Computing and Information Science Technical Report
http://hdl.handle.net/1813/11661

December 22, 2008

Civitas: Implementation of a Threshold
Cryptosystem∗

Adam M. Davis Dmitri Chmelev Michael R. Clarkson
{amd16,dc566,clarkson}@cs.cornell.edu

Department of Computer Science
Cornell University

December 22, 2008

Abstract

This paper describes the implementation of a threshold cryptosystem for
Civitas, a secure electronic voting system. The cryptosystem improves the
availability of Civitas by enabling tabulation to complete despite the failure
of some agents. The implementation includes a sophisticated distributed key
generation protocol, which was designed by Gennaro, Jarecki, Krawczyk,
and Rabin. The cryptosystem is implemented in Jif, a security-typed lan-
guage.

1 Introduction

Voting systems are hard to make trustworthy because they have strong, conflict-
ing security requirements: voters must be convinced that their votes are tallied
correctly, while the secrecy of those votes must also be maintained—even when
someone tries to buy votes or physically coerce voters. Civitas [1] is an electronic
remote voting system that satisfies these requirements and offers assurance through
both cryptographic security proofs and information-flow analysis.

The original implementation of Civitas used a distributed El Gamal cryptosys-
tem. A cryptosystem is a set of three protocols—key generation, encryption, and
decryption—and a distributed cryptosystem is a cryptosystem in which a set of
agents must cooperate to perform decryption. A distributed cryptosystem improves
∗Supported in part by National Science Foundation grant 0430161. Michael Clarkson is sup-

ported by an Intel Foundation Ph.D. Fellowship.

1

confidentiality by preventing any single agent from decrypting messages. How-
ever, the cryptosystem used in Civitas requires all agents to be present throughout
decryption, thus weakening availability.

In the work reported here, we replace Civitas’s cryptosystem with a threshold
cryptosystem that uses Shamir secret sharing [8] for the private key. If no more
than t agents fail, then the decryption protocol is guaranteed to terminate with a
correct decryption. An agents fails when it deviates from the specified protocol,
perhaps by crashing, by exhibiting malicious behavior, by committing accidental
errors, etc.; an agent that has not failed is honest. Similarly, the key generation pro-
tocol is guaranteed to terminate with a correctly shared private key if no more than
t agents fail. Moreover, no collusion of t or fewer agents can gain any informa-
tion about the distributed private key. This threshold cryptosystem offers a better
tradeoff between confidentiality and availability than the original cryptosystem.

2 Design

2.1 Key Generation

We use the distributed key generation protocol proposed by Gennaro et al. [6]. The
protocol runs in two phases: commitment to a jointly generated secret x, and ex-
traction of the public key. Assuming that at most t < n/2 tellers can fail, the
protocol guarantees that a set of at least t + 1 tellers that follow the protocol cor-
rectly is able to successfully generate a key, and that any collusion of up to t tellers
does not reveal the value of x. The value of x is never revealed by the protocol
itself.

2.1.1 Commitment phase

We assume an El Gamal group G described by parameters p, q and g, where p and
q are primes, such that p = 2kq + 1 for some integer constant k > 0, group G is
the order q subgroup of Z∗p, and g is a generator of G.

Each teller i selects two random polynomials fi(z) = ai0 + ai1z + .. + aitz
t

and f ′i(z) = bi0 + bi1z + .. + bitz
t of degree t. (Recall that t is the maximum

number of tellers that is allowed to fail.) The coefficients of each polynomial are
randomly chosen from Zq. Let zi = ai0 = fi(0); this is the random value that teller
i contributes to the joint secret x. Each teller commits to the selected polynomials
by running an instance of Pedersen-VSS [7], using fi and f ′i and an additional
parameter h randomly selected from G. Pedersen-VSS is a verifiable secret-sharing
scheme that allows one of the agents, called the dealer, to share a secret with a set

2

of n agents, such that a set of t + 1 honest agents can reconstruct the secret and
detect whether the dealer was malicious.

Every teller sends points sij = fi(j) mod q and s′ij = f ′i(j) mod q to every
other teller j on private channels, which must be authenticated and confidential.
Call these points the private commitments of teller i. Since zi is a term in fi, every
point sij contains information about zi. Moreover, given at least t + 1 points, zi
can be successfully recovered. To prove that the private commitments are correct,
each teller also publishes

Cik = gaikhbik mod p for k ∈ [0...t].

Each teller i can verify the correctness of the private commitments received from
teller j by checking that

gsjihs
′
ji =

t∏
k=0

(Cjk)i
k

mod p for j ∈ [1...n]. (1)

If the private commitments fail the check, then teller i issues a complaint
against teller j. Teller j responds to this complaint by revealing sji and s′ji that
match (1) to all tellers. A teller that receives more than t complaints or fails to
provide a response that satisfies (1) is automatically disqualified and its zi is not
included in the joint secret x. A teller that receives fewer than t complaints or
responds with the correct private commitment is allowed to continue participat-
ing in the key generation protocol. Note that tellers that deviate from the protocol
can generate at most t complaints against a teller i that behaves correctly. These
complaints reveal at most t points of fi, but at least t + 1 points are necessary
to determine the value of zi. Thus complaints and responses do not reveal any
information about the joint secret.

At the end of the commitment phase each teller calculates a set of qualified
tellers, Qual, that correctly shared sij and s′ij . Gennaro et al. prove that this set is
the same for all tellers. The secret key share for teller i is

xi =
∑

j∈Qual
sji mod q.

The public key share for teller i is

yi = gzi mod p.

The joint secret—that is, the shared private key—is

x =
∑

i∈Qual
zi mod q.

3

2.1.2 Public key extraction phase

The tellers extract the value of the shared public key Y via Feldman-VSS [4].
Feldman-VSS is a verifiable secret sharing scheme that extends Shamir secret shar-
ing by allowing the recipients of the shares to verify that they are consistent—that
is, any set of t + 1 shares identifies the secret selected by the dealer. If a teller i
misbehaves during this phase, then its contribution to x can be reconstructed from
the set {sij | j ∈ Qual} of private commitments by a set of at least t + 1 honest
tellers from Qual, using Lagrange interpolation to reconstruct fi(0).

Hereafter, we consider only tellers that are members of Qual. Each teller i
publishes

Aik = gaik mod p for k ∈ [0...t].

Note that Ai0 is the value of the public key share yi of teller i. Each teller i can
verify the correctness of the values Ajk received from teller j by verifying that

gsji =
t∏

k=0

(Ajk)i
k
mod p. (2)

If the check fails, then teller i complains against teller j by publicly revealing
values sji and s′ji that fail (2) but satisfy (1).

If at least one valid complaint is issued against teller i, then a set of at least
t + 1 honest tellers can reconstruct zi by running the reconstruction phase of
Pedersen-VSS, using Lagrange interpolation:

zi =
∑

j∈Qual
sij · λj,Qual mod q,

λj,Qual =
∏

l∈Qual\{j}

l

l − j
.

The value of the public shared key is

Y =
∏

i∈Qual
yi mod p. (3)

A detailed proof of correctness of the above scheme can be found in [6] and is
omitted here.

2.1.3 Communication channels

Public messages require only authenticity and integrity, which are already provided
by the existing bulletin board interface in Civitas.

4

The communication model used in [6] assumes the existence of private chan-
nels, because Pedersen-VSS requires that the private commitments are sent pri-
vately. We provide such a channel using a combination of encryption, signatures,
and the bulletin board, which was already implemented in Civitas. Each private
message, along with the identifiers of the tellers involved, is signed under the pri-
vate key of the sender. The result, together with the identifiers of the tellers in-
volved, is encrypted under the public key of the recipient and posted to the bulletin
board. This approach binds the identifiers of the principals involved to both layers
of signing and encryption, defending against attacks in [3]. Our implementation
guarantees secrecy, authenticity and integrity of the private messages and satisfies
the requirements of the communication model in [6].

2.2 Encryption

Encryption under the threshold scheme is identical to the non-distributed, non-
threshold case using Y , defined in (3), as the public key.

2.3 Decryption

We use the decryption scheme proposed by Cramer et al. [2]. Let ciphertext c be
the encryption of message M under key Y with random nonce r, where

c = (a, b),
a = gr mod p,

b = M · Y r mod p.

The decryption protocol is as follows:

• Teller i publishes share ai = axi mod p, along with a zero-knowledge proof
that

logg g
xi = loga ai. (4)

• Teller i collects the shares posted by the other tellers in Qual.

• Teller i discards the shares that fail the proof.

5

• Teller i computes, using a set Λ of at least t+ 1 shares that satisfy (4),

A =
∏
j∈Λ

a
λj,Λ

j mod p

= a
∑

k∈Qual zk mod qmod p

= Y r mod p,

where
λj,Λ =

∏
l∈Λ\{j}

l

l − j
.

The decryption of c is b
A mod p = M .

3 Implementation

3.1 Integration and New Functionality

Even though the algorithms for encryption and decryption under the pre-existing
distributed scheme are not identical to those in the new scheme, we successfully
reused parts of the existing implementation in implementing the threshold scheme.
Whereas encryption remained unchanged, decryption required only minor modifi-
cations. In contrast, the key generation protocol was replaced almost entirely and
necessitated the implementation of two new kinds of channels.

Civitas already had all the functionality required for generating members of El
Gamal groups and mathematical operations within those groups, as well as meth-
ods to compute zero-knowledge proofs to exhibit the knowledge and equality of
discrete logarithms. The latter is necessary for the verification of decryption shares
as part of the distributed decryption process, the former is used in key generation,
encryption and decryption.

3.1.1 Decryption

We did not change the process by which decryption shares are generated; however,
we did change the mechanism by which decryption shares are combined. Civitas
originally reported an error and failed upon identifying a single missing or incor-
rect decryption share, where incorrect means that the share’s accompanying proof
failed to verify. Such occurrences are now merely logged and the process is al-
lowed to continue. During combination, the number of correct shares is compared
to the minimum requirement (t + 1) and, if insufficient, an error is raised and de-
cryption is abandoned. We also changed combination of decryption shares to use
Lagrange coefficients.

6

To support the new functionality, we made some minor additions to the ElGa-
malParameters class, extending it with additional fields: t, denoting the maximum
number of failed nodes to be tolerated, and h, needed for Pedersen-VSS. Both
parameters are shared by all participants.

3.1.2 Private Channels

The security proof of Gennaro et al. [6] assumes channels that prevent modifi-
cation of messages, and untappable channels that ensure confidentiality between
pairs of nodes. But according to both Cramer et al.[2] and Gennaro [5], these as-
sumptions can be discharged with appropriate cryptographic mechanisms for con-
fidentiality, authentication, and integrity. Thus, on top of the bulletin board we
implemented two channel abstractions, one private but both providing authentica-
tion and integrity. The basic, non-private channel utilizes cryptographic hashes
(for integrity) and signatures (for authenticity). The private channel adds encryp-
tion to these features for confidentiality. The channel itself is implemented in
jif-src/tabulation/server/BBChannel.jif, with two additional interfaces used for the
message types it sends: XMLSerializableBroadcast, and a sub-interface XMLSe-
rializableUnicast, both in jif-src/common.

The key generation protocol in the new cryptosystem is fundamentally differ-
ent than that which previously existed in Civitas. Along with the communication
channels just described, this protocol represents the most significant changes to
the codebase. The message classes used by the key generation protocol are imple-
mented in jif-src/common:

• Commitment

• PrivProofResponse

• PubKeyShareComplaint

• PublicKeyShareList

• PublicKeyVote

• ReconInfo

• SharePoint

• SharePointComplaints

• ShareResponsesBase

7

In addition, we added several new methods to XMLDeserializers to facilitate
their recovery from the XML format in which they are posted to the BulletinBoard.
A helper class, QualSet, also in jif-src/common, manages the qualification status of
tellers during the key generation process. We added the Point class to jif-src/crypto
to provide a holder for the actual representation of the pair of polynomial eval-
uations that make up a SharePoint, which is a CivitasBigInteger. The concrete
implementation of that class, PointC, can be found in java-src/crypto/concrete.

We added several new functions to CryptoFactoryC (and their signatures to
CryptoFactory):

• generatePolynomial

• generateThreshKeyGenCommitment

• evalPolyModQ (despite its name, it does not perform modular arithmetic)

• validateSharePointVsCommitment

• getMaxNumberOfFailedTellers

• aggregateSharePointsSumFactory

• thresholdPublicKeyShareListFactory

• constructKeyPairShare

• validatePublicKeyShareListVsPoint

• reconstructPublicShare

• productModP

• elGamalKeyShareFactory

• elGamalPublicKeyFactory

In implementing key generation, we had to address a few non-obvious details:

• To compute a given Lagrange coefficient we first compute the value of the
denominator using BigInteger values, then take the modular inverse of the
result and perform a modular multiplication by the BigInteger value of the
numerator. The resulting value still belongs to G and is represented as a
BigInteger.

• Calculation of sij : The sij values are not members of G, and thus are calcu-
lated (when evaluating the polynomials) without modular arithmetic.

8

• Calculation of sii: It is essential to the correct determination of private key
shares that each teller compute the evaluation of its polynomial at its own
index (sii). Although this value is never transmitted nor validated by other
tellers, it is used in the production of the private key share.

• Public key dissemination: The public key that each teller calculates privately
at the conclusion of the key generation protocol must be agreed upon and
stored. This is done via quorum. Since the system is guaranteed to have
only t failed tellers, then any public key value agreed upon by at least t + 1
tellers is guaranteed to include a vote from a correct teller and therefore
be the correct value. Each teller therefore posts its vote for the public key.
All consumers collect these votes for the public key and select the one that
receives that quorum of votes.

3.2 Testing

Due to constraints (mostly imposed by Jif itself) on the ability to call individ-
ual functions provided by CryptoFactoryC, we conducted unit testing of the non-
channel code with a separate testing method implemented in TTProtocol.jif. This
method simulates the execution of the entire key generation protocol, including
reconstruction and the encrytpion/decryption of a trivial message from the per-
spective of all participants. This test exercises all of the CryptoFactoryC helper
methods. But this test does not provide coverage of the message classes, nor does
it directly test the key generation protocol method. For the former, these classes
are trivial and readily tested via the channel tests described next. For the latter, we
chose to test key generation in a non-distributed way because of the difficulty of en-
gineering a distributed test. Integration tests, conducted via the existing experiment
framework, provide the assurance of the actual code path.

We tested both the private and public channels by using them in the old (i.e.,
non-threshold) Civitas key generation protocol. It was much easier to use this
protocol than to create a separate stand-alone unit test, because the set-up of the
channel requires a large number of Civitas components to be initialized. Since the
key share commitment phase of the old protocol uses hashed and signed messages,
it was an ideal test case for the new public channel that we built. To test the public
channel, we modified Civitas’s old key generation protocol to use the public chan-
nel instead of posting messages to the bulletin board. To test the private channel,
we introduced a dummy message that was sent privately during the run of the key
generation protocol. We aborted key generation if there was an error sending or re-
ceiving the private message; since all tellers are required to be present to generate
the key in the old protocol, we could reliably detect these errors.

9

A Protocol Specification

In the following protocols, let N be the space of nonces and let publish(m)
denote publishing message m on the bulletin board BB.

El Gamal Threshold Parameters

((p, q, g), t, h) - where (p, q, g) are the regular El Gamal parameters,
h ← G is the member of El Gamal group G, and t is the maximum
number of tellers allowed to fail. It is assumed that t < n

2 , where n
is the total number of tellers, and that the adversaries can’t compute
logg h.

ALGORITHM: Send Public Message

Input: meta - meta string
from id - sender identifier
m - message to be sent
ks - RSA private signing key

1. r ← N
2. s = SignRSA(hash(meta, from id,m); ks)
3. publish(meta, from id,m, s)

ALGORITHM: Send Private Message

Input: meta - meta string
from id - sender identifier
to id - recipient identifier
m - message to be sent
ks - RSA private signing key
Ke - RSA public encryption key

1. r ← N
2. k ← GenAES(1l), where l is the the security parameter for AES
3. ck = EncRSA(k;Ke)
4. s = SignRSA(hash(meta, from id, to id,m); ks)
5. cm = EncAES(meta, from id, to id,m, s; k)
6. publish(meta, from id, to id, ck, cm)

10

ALGORITHM: Receive Public Messages

Input: meta - meta string
from id - sender identifier
K - RSA public key of teller with id from id

Output: RecvPubMsg(meta, from id)

1. Output

{(meta, from id,m) | (meta, from id,m, s) ∈ BB
∧ VerRSA(hash(meta, from id,m), s;K)}

ALGORITHM: Receive Private Messages

Input: meta - meta string
from id - sender identifier
to id - recipient identifier
kd - RSA private decryption key
K - RSA public key of teller with id from id

Output: RecvPrivMsg(meta, from id, to id, kd)

1. SM = ∅
2. For each message {m : m = (meta, from id, to id, ck, cm) ∈ BB}:

- k = DecRSA(ck; kd)
- (meta′, from id′, to id′,M, s) := DecAES(cm; k)
- if VerRSA(hash(meta′, from id′, to id′,M), s;K)

then SM := SM ∪M
3. Output SM

11

PROTOCOL: Distributed Threshold El Gamal Key Generation

Due to: Gennaro et al. [6]
Principals: Tabulation tellers TT1, ...,TTn
Public Input: Distributed Threshold El Gamal Parameters (p, q, g, h, t)

Set of RSA public keys for each teller, {KTTi : 1 ≤ i ≤ n}
eid - election id; idi, ..., idn - teller ids

Private input (TTi): RSA private signing key ksTTi

RSA private decryption key kTTi

Output: Public key Y, public key shares yi
1. TTi: Generate polynomials and public and private commitments:

- Let polynomial fi(z) = ai0 + ai1z + ...+ aitz
t,

where aik ← Zq for k ∈ [0...t]
- Let zi = ai0 = f(0)
- Let polynomial f ′i(z) = bi0+bi1z+...+bitzt, where bik ← Zq

for k ∈ [0...t]
- Cik = gaikhbik mod p for k ∈ [0...t]
- sij = fi(j), s′ij = f ′i(j) mod q for j ∈ [1...n]

2. TTi: Send Commitments:
- Send Public Message(pub cmt, i, (Ci0, ..., Cit), ksTTi)
- Send Private Message(priv cmt, i, j, (sij , s′ij), ksTTi ,KTTj)

3. TTi: Verify commitments:
- Receive Public Messages(pub cmt, j) for j ∈ [1...n]
- Receive Private Messages(priv cmt, j, i, kTTi) for j ∈ [1...n]
- Verify that

gsjihs
′
ji =

t∏
k=0

(Cjk)i
k

mod p for j ∈ [1...n]

If the check fails issue a complaint from i against j:
Send Public Message(cmt compl, i, (i, j), ksTTi)

4. TTi: Retrieve complaints against teller i and send responses:
- CP = Receive Public Messages(cmt compl, j) for j ∈ [1...n]
- For every complaint from teller TTj against teller TTi, (j, i):

Send Public Message(cmt compl resp, i, ((i, j), sij , s′ij), ksTTi)
- For every complaint against TTj , increment complaints counter
cj := cj + 1

12

5. TTi: Verify complaint responses and determine the set of qualified tellers:
- CR = Receive Public Messages(cmt compl resp, j)

for j ∈ [1...n]
- For every j ∈ [1...n]:

If either:
(cj > t), or
CR contains a response from teller TTj that fails the check
in step 3,

then Disq := Disq ∪ {TTj}
- Qual = {TT1, ..., TTn} ∩Disq

6. TTi: Compute private key share xi and publish public key share com-
mitments:

- xi =
∑

j∈Qual
sji mod q

- Aik = gaik mod p for k ∈ [0...t]
- Send Public Message(keyshare cmt, i, (Ai1, ..., Ait), ksTTi)

7. TTi: Verify public key share commitments for every teller j ∈ Qual:
- CP = Receive Public Messages(keyshare cmt, j)
- Disq := ∅
- Verify that

gsji =
t∏

k=0

(Ajk)i
k
mod p

If the check fails:
Send Public Message(keyshare cmt compl, i, ((i, j), sji, s′ji), ksTTi),
where sji, s′ji satisfy the check at step 3.

8. TTi: Verify complaints and update the set of disqualified tellers:
- CP = Receive Public Messages(keyshare cmt compl, j)

for j ∈ Qual
- For each teller j that received a complaint in CP :

Verify that the complaint is valid using the checks in steps 3
and 7 (a valid complaint will satisfy the check in 3, but will
fail the check in 7).
If the complaint is valid:
Disq := Disq ∪ {TTj}
Send Public Message(reconst cmt, i, ((j, i), sji, s′ji), ksTTi)

13

9. TTi: Collect missing commitments for the disqualified tellers, perform
reconstruction of the missing public key shares:

- CP = Receive Public Messages(reconst cmt, j)
for j ∈ Disq

- For each teller j ∈ Disq:
zj =

∑
k∈Qual

sjk · λk,Qual mod q,

where sjk, s′jk ∈ CP pass the check in step 3 and

λk,Qual =
∏

l∈Qual\{k}

l

l − k

10. TTi: yi = gzi mod p
Y =

∏
j∈Qual yj mod p

PROTOCOL: Distributed Threshold El Gamal Decryption

Due to: Cramer et al. [2]
Principals: TTi - tabulation teller i
Public Input: (p, q, g, h, t) - Distributed Threshold El Gamal Parameters

Y - shared public key
c = (a, b) - ciphertext, where a = gr mod p and b = M · Y r mod p
for plaintext M and public key y
yi - public key share

Private input(TTi): xi - private key share of teller i
Qual - set of qualified tellers

Output: ThreshDistDec(c;X)

1. TTi: Publish share ai = axi mod p and proof EqDlogs(g, a, gxi , ai)
2. TTi: Let Λ = {j : j ∈ Qual ∧ EqDlogs(g, a, gxj , aj)}
3. TTi: Abort unless |Λ| ≥ t+ 1

4. TTi: Compute A =
∏
j∈Λ

a
λj,Λ

j mod p, where λj,Λ =
∏

l∈Λ\{j}

l

l − j

5. TTi: Output M = b
A mod p

14

References

[1] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: Toward
a secure voting system. In Proc. IEEE Symposium on Security and Privacy,
pages 354–368, May 2008.

[2] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and op-
timally efficient multi-authority election scheme. In Proc. International Con-
ference on the Theory and Application of Cryptographic Techniques (EURO-
CRYPT), pages 103–118, May 1997.

[3] Don Davis. Defective sign & encrypt in S/MIME, PKCS#7, MOSS, PEM,
PGP, and XML. In Proc. General Track of USENIX Annual Technical Confer-
ence, pages 65–78, June 2001.

[4] Paul Feldman. A practical scheme for non-interactive verifiable secret sharing.
In Proc. IEEE Symposium on Foundations of Computer Science, pages 427–
438, 1987.

[5] Rosario Gennaro. Personal communication, December 2008.

[6] Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
distributed key generation for discrete-log based cryptosystems. J. Cryptology,
20(1):51–83, 2007.

[7] Torben Pryds Pedersen. A threshold cryptosystem without a trusted party.
In Proc. Annual International Conference on the Theory and Application of
Cryptographic Techniques (EUROCRYPT), pages 522–526, April 1991.

[8] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–
613, 1979.

15

