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Abstract

Civitas is the first electronic voting system that is coercion-resistant, universally and voter
verifiable, and suitable for remote voting. This paper describes the design and implementation
of Civitas. Assurance is established in the design through security proofs, and in the imple-
mentation through information-flow security analysis. Experimental results give a quantitative
evaluation of the tradeoffs between time, cost, and security.

1 Introduction
Electronic voting is now a reality—and so are the many errors and vulnerabilities in commercial
electronic voting systems [4, 12, 61, 91]. Voting systems are hard to make trustworthy because they
have strong, conflicting security requirements:

• Integrity of election results must be assured so that all voters are convinced that votes are
counted correctly. Any attempt to corrupt the integrity of an election must be detected and
correctly attributed.

• Confidentiality of votes must be assured to protect voters’ privacy, to prevent selling of votes,
and to defend voters from coercion.

Integrity is easy to obtain through a public show of hands, but this destroys confidentiality. Con-
fidentiality can be obtained by secret ballots, but this fails to assure integrity. Because of the civic
importance of elections, violations of these requirements can have dramatic consequences.

Many security experts have been skeptical about electronic voting [32, 36, 54, 66, 78], arguing
that assurance in electronic voting systems is too hard to obtain and that their deployment creates
unacceptable risks. Our work, however, was inspired by the possibility that electronic voting sys-
tems could be more trustworthy than their non-electronic predecessors. This paper describes and
evaluates Civitas, the prototype system we built to explore that possibility. Although not yet suit-
able for deployment in national elections, Civitas enforces verifiability (an integrity property) and
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coercion resistance [58] (a confidentiality property). Civitas does not rely on trusted supervision of
polling places, making it a remote voting system.

To obtain assurance in the security of Civitas, we employed principled techniques:

• Security proofs. The design of Civitas refines a cryptographic voting scheme1 due to Juels,
Catalano, and Jakobsson [58], who proved their scheme secure; we extend the proof to ac-
count for our changes.

• Secure information flow. The implementation of Civitas is in Jif [67, 69], a language which
enforces information-flow security policies.

This validation of the design and implementation supports our argument that Civitas is secure.
The security provided by Civitas is not free. Tradeoffs exist between the level of security pro-

vided by Civitas tabulation, the time required for tabulation, and the monetary cost of tabulation.
To better understand these tradeoffs, we studied the performance of Civitas. The results reveal that
(with reasonable security and time parameters), the marginal cost of tabulation is as low as 4¢ per
voter. Since the current cost of a government election in a stable Western democracy is $1 to $3 per
voter [49], Civitas can provide increased security at little additional cost.

Developing Civitas led to several contributions:

• A provably secure voter registration protocol, which distributes trust over a set of registration
authorities.

• A scalable design for vote storage that ensures integrity without expensive fault tolerance
mechanisms.

• A performance study demonstrating the scalability of secure tabulation.

• A coercion-resistant construction for implementing a ranked voting method.

• A concrete, publicly available specification of the cryptographic protocols required to im-
plement a coercion-resistant, verifiable, remote voting scheme. This specification leverages
many results in the cryptographic and voting literature.

Moreover, Civitas is the first voting system to implement a scheme proved to satisfy coercion re-
sistance and verifiability. Thus, Civitas takes an important step toward bringing secure electronic
voting to reality.

We proceed as follows. Section 2 discusses the Civitas security model. The design of Civi-
tas is presented in Section 3. Section 4 evaluates the security of Civitas. The implementation of
cryptographic components is described in Section 5, and the scalability of tabulation is analyzed in
Section 6. The Jif implementation is described in Section 7. Ranked voting methods are discussed
in Section 8. Section 9 presents our performance study. Related work is reviewed in Section 10,
and some remaining challenges are identified in Section 11. Section 12 concludes.

1For clarity, we define voting systems as implementations, voting schemes as cryptographic protocols, and voting
methods as algorithms that aggregate voters’ preferences to produce a collective decision.
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2 Security Model
The Civitas security model comprises the environment in which Civitas is used, the security prop-
erties we require Civitas to satisfy, and the capabilities we ascribe to the adversary attempting to
subvert those properties.

Remote voting. Electronic voting systems are often designed for supervised voting, which as-
sumes trusted human supervision of the voters, procedures, hardware, and software in polling
places. But this contradicts society’s trend toward enabling interactions from anywhere at any time.
For example, voters in the state of Oregon now vote only by postal mail, and all states receive a
substantial fraction—enough to change the outcome of many elections—of their ballots by mail as
absentee ballots. As another example, Internet voting is increasingly used by groups such as De-
bian [28], the ACM [3], and the IEEE [48]. Estonia even conducts legally binding national elections
using the Internet [35].

Postal voting and Internet voting are instances of remote voting, which does not assume trusted
supervision of polling places. Remote voting is thus a more general problem, and a harder problem,
than supervised voting. Because of the evident interest in remote voting, we believe that remote vot-
ing is the right problem to solve. One of our goals was therefore to strike a reasonable compromise
between enabling remote voting and guaranteeing strong security properties. This compromise led
to two requirements. First, in some circumstances, voters must register at least partly in person.
Second, voters must trust the computational device they use to submit votes—though unlike con-
ventional supervised voting, in which voters must trust the particular device supplied by their local
election authorities, Civitas enables each voter to choose a supplier and device. We discuss these
requirements in Section 4.

Security properties. To fulfill the integrity requirement of Section 1, we require Civitas to satisfy:

Verifiability. The final tally is verifiably correct. Each voter can check that their own vote is
included in the tally (voter verifiability). Anyone can check that all votes cast are counted, that
only authorized votes are counted, and that no votes are changed during counting (universal
verifiability).2

We define “verifiability” informally for simplicity, but Civitas satisfies the formal definition given
by Juels et al. [58].3

Verifiability improves upon the integrity properties commonly offered by real-world voting sys-
tems. For example, real-world systems rarely allow individual voters to verify that their own votes
were included in the tally, or to verify the tally themselves. As another example, the commercial
electronic voting systems currently deployed in California offer no guarantees that votes are counted
correctly [91].

To fulfill the confidentiality requirement of Section 1, a voting system might guarantee anonymity,
meaning that the information released by the system never reveals how a voter voted. However, for
remote voting, anonymity is too weak. Voters might gain additional information during voting that
could enable the buying and selling of votes. Such information could also be used to coerce voters.

2Universal verifiability was originally defined by Sako and Kilian [81].
3Verifiability could be formulated as the correctness property of secure multi-party computation [42]. Intuitively,

this requires that no adversary can change the results of tabulation to be different than if all votes were announced and
tabulated publicly.
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In remote voting, the coercer could even be the voter’s employer or domestic partner, physically
present with the voter and controlling the entire voting process. Against such coercers, it is nec-
essary to ensure that voters can appear to comply with any behavior demanded of them. Further,
confidentiality must be maintained even when voters collude with the adversary.

Thus, for confidentiality, we require Civitas to satisfy:

Coercion Resistance. Voters cannot prove whether or how they voted, even if they can
interact with the adversary while voting.4

We define “coercion resistance” informally5 for simplicity, but Civitas again satisfies the formal
definition given by Juels et al. [58].6 This formal definition requires Civitas to defend against attacks
in which the adversary demands secrets known to the voter, and attacks in which the adversary
demands that the voter submits a value chosen by the adversary. This value might be a legitimate
vote or a random value. The adversary may even demand that the voter abstain by submitting no
value at all.7

A third security requirement that could be added is availability of the voting system and tabu-
lation results. Although this would be essential for a national voting system, we do not require our
prototype to satisfy any availability property. Some aspects of availability, such as fault tolerance,
could be addressed by well-known techniques. Other aspects, such as defending against selective
denial-of-service attacks intended to disenfranchise particular groups of voters, are open problems.

Threat model. We require Civitas to be secure with respect to an adversary (essentially due to
Juels et al. [58]) with the following capabilities:

• The adversary may corrupt a threshold (made precise in Section 4) of the election authorities,
mutually distrusting agents who conduct an election. Agents might be humans, organizations,
or software components.

• The adversary may coerce voters, demand their secrets, and demand any behavior of them—
remotely or in the physical presence of voters. But the adversary may not control a voter
throughout an entire election, otherwise the voter could never register or vote.

• The adversary may control all public channels on the network. However, we also assume the
existence of some anonymous channels, on which the adversary cannot identify the sender,
and some untappable channels, which the adversary cannot use at all.8

• The adversary may perform any polynomial-time computation.
4Removing interaction with the adversary results in receipt-freeness, a weaker property originally defined by Be-

naloh [8].
5“Coercion resistance” is used informally throughout the literature. Juels et al. [58] and Delaune et al. [29] give formal

definitions in the computational and symbolic models, respectively, of cryptography. The informal definition given above
is consistent with both.

6Coercion resistance could be formulated as the privacy property of secure multi-party computation. Intuitively, this
requires that no adversary can learn any more about votes than is revealed by the results of tabulation.

7Note that the requirement to defend voters from forced-abstinence attacks is incompatible with a public record of
who has voted.

8An untappable channel must provide perfect secrecy, perhaps by being physically untappable or by implementing a
one-time pad.
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Figure 1: Civitas architecture

3 Design
Civitas refines and implements a voting scheme, which we refer to as JCJ, developed by Juels, Cata-
lano, and Jakobsson [58]. The differences between our design and JCJ are discussed in Section 10.

3.1 Agents
There are five kinds of agents in the Civitas voting scheme: a supervisor, a registrar, voters, regis-
tration tellers, and tabulation tellers. Some of these are depicted in Figure 1. The agents other than
voters are election authorities:

• The supervisor administers an election. This includes specifying the ballot design and the
tellers, and starting and stopping the election.

• The registrar authorizes voters.

• Registration tellers generate the credentials that voters use to cast their votes.

• Tabulation tellers tally votes.

These agents use an underlying log service that implements publicly readable, insert-only stor-
age. Integrity of messages in a log is ensured by digital signatures. Agents may sign messages
they insert, ensuring that the log service cannot forge new messages. The log service must sign
its responses to reads, ensuring that attempts to present different views of log contents to different
readers can be detected. Multiple instances of the log service are used in a single election. One in-
stance, called the bulletin board, is used by election authorities to record all the information needed
for verifiability of the election. The remaining instances, called ballot boxes, are used by voters to
cast their votes.9

9In our prototype, the log service instances are centralized systems provided by the election authorities—the bulletin
board by the supervisor, and one ballot box by each tabulation teller. But instances could be made distributed systems to
improve availability, and instances could be provided by agents other than the election authorities.
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3.2 Setup phase
First, the supervisor creates the election by posting the ballot design on an empty bulletin board.
The supervisor also identifies the tellers by posting their individual public keys.10

Second, the registrar posts the electoral roll, containing identifiers (perhaps names or registra-
tion numbers) for all authorized voters, along with the voters’ public keys. Each voter is assumed
to have two keys, a registration key and a designation key, whose uses are described below.

Third, the tabulation tellers collectively generate a public key for a distributed encryption scheme
and post it on the bulletin board. Decryption of messages encrypted under this key requires the par-
ticipation of all tabulation tellers.

Finally, the registration tellers generate credentials, which are used to authenticate votes anony-
mously. Each credential is associated with a single voter. Like keys in an asymmetric cryptosystem,
credentials are pairs of a public value and a private value. All public credentials are posted on the
bulletin board, and each registration teller stores a share of each private credential. Private creden-
tials can be forged or leaked only if all registration tellers collude.

3.3 Voting phase
Voters register to acquire their private credentials. Each registration teller authenticates a voter using
the voter’s registration key. The teller and voter then run a protocol, using the voter’s designation
key, that releases the teller’s share of the voter’s private credential to the voter. The voter combines
all of these shares to construct a private credential.

Voting may take place immediately, or a long time after registration. To vote, the voter submits
a private credential and a choice of a candidate (both encrypted), along with a proof that the vote
is well-formed, to some or all of the ballot boxes. (This submission does not require either of the
voter’s keys.) Replication of the vote across the ballot boxes is used to guarantee availability of the
vote for tabulation.

Resisting coercion. The key idea (due to Juels et al. [58]) that enables voters to resist coercion,
and defeats vote selling, is that voters can substitute fake credentials for their real credentials, then
behave however the adversary demands. For example:

If the adversary
demands that
the voter. . .

Then the voter. . .

Submits a particu-
lar vote

Does so with a fake credential.

Sells or surren-
ders a credential

Supplies a fake credential.

Abstains Supplies a fake credential to the
adversary and votes with a real
one.

To construct a fake credential, the voter locally runs an algorithm to produce fake private cre-
dential shares that, to an adversary, are indistinguishable from real shares. The faking algorithm
requires the voter’s private designation key. The voter combines these shares to produce a fake
private credential; the voter’s public credential remains unchanged.

10A real-world deployment of Civitas would need a public-key infrastructure to certify keys.
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Revoting. Voters might submit more than one vote per credential. The supervisor has the flex-
ibility to specify a policy on how to tally such revotes. If revotes are not allowed, then all votes
submitted under duplicate credentials are eliminated. If revotes are allowed, then the voter must
include a proof in later votes to indicate which earlier votes are being replaced. This proof must
demonstrate knowledge of the credential and choice used in both votes, preventing an adversary
from revoting on behalf of a voter.

Ballot design. Civitas is compatible with the use of any ballot design for which a proof of well-
formedness is possible. Our prototype supports the use of ballots in which voters may choose a
single candidate (plurality voting), any subset of candidates (approval voting), or a ranking of the
candidates (ranked voting). However, ranked voting introduces covert channels that enable attacks
on coercion resistance. We discuss this vulnerability, and how to eliminate it, in the accompanying
technical report [23].11

Write-in votes could also be supported by Civitas, since any write-in could be considered well-
formed. However, write-ins also enable attacks on coercion resistance.12 To our knowledge, it is
not possible to eliminate this vulnerability, so we chose not to implement write-ins in our prototype.

3.4 Tabulation phase
The tabulation tellers collectively tally the election:

1. Retrieve data. All tabulation tellers retrieve the votes from each ballot box and the public
credentials from the bulletin board.

2. Verify proofs. The tellers check each vote to verify the proof of well-formedness. Any vote
with an invalid proof is discarded. (For efficiency, our implementation actually merges this
with the next step.)

3. Eliminate duplicates. At most one vote is retained for each credential. Votes with duplicate
credentials are eliminated according to the revoting policy.

4. Anonymize. Both the list of submitted votes and the list of authorized credentials are anony-
mized by applying a random permutation, implemented with a mix network [16]. In the mix,
each tabulation teller in turn applies its own random permutation.

5. Eliminate unauthorized votes. The credentials in the anonymized votes are compared
against the anonymized authorized credentials. Any votes with invalid credentials are dis-
carded.

6. Decrypt. The remaining choices, but not credentials, are decrypted. The final tally is publicly
computable.

11Other kinds of ballots can be encoded into one of these supported forms. For example, conditional ballots, in which
a voter selects “yes” or “no” on some issue, then is offered particular candidates based on this selection, can be encoded
as a plurality vote on a pair of a selection and a candidate.

12For example, the adversary could issue each voter a unique, large number, then demand that the voter submit that
number as the voter’s choice. If that number does not appear in the final list of decrypted choices, the adversary knows
that the voter did not comply.
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Verifying an election. Tabulation is made publicly verifiable by requiring each tabulation teller
to post proofs that it is honestly following the protocols. All tabulation tellers verify these proofs as
tabulation proceeds. An honest teller refuses to continue when it discovers an invalid proof. Anyone
can verify these proofs during and after tabulation, yielding universal verifiability. A voter can also
verify that his vote is present in the set retrieved by the tabulation tellers, yielding voter verifiability.

4 Security Evaluation
The Civitas voting scheme requires certain assumptions about the trustworthiness of agents and
system components. We discuss what attacks are possible when these trust assumptions are violated,
and what defenses an implementation of the scheme could employ.

Trust Assumption 1. The adversary cannot simulate a voter during registration.

There must be some period of time during which the adversary cannot simulate the voter. Other-
wise the system could never distinguish the adversary from the voter, so the adversary could register
and vote on behalf of a voter. Registration is a good time for this assumption because it requires
authentication and can be done far in advance of the election.

During registration, Civitas authenticates voters with their registration keys. So this assumption
restricts the adversary from acquiring a voter’s key before the voter has registered. However, vot-
ers might attempt to sell their private registration keys, or an adversary might coerce a voter into
revealing the voter’s key.13 Both attacks violate Trust Assumption 1 by allowing the adversary to
simulate a voter.

One possible defense would be to store private keys on tamper-resistant hardware, which could
enforce digital non-transferability of the keys. This is not a completely effective defense, as voters
could physically transfer the hardware to the adversary. Preventing such physical transfers is not
generally possible, but they could be discouraged by introducing economic disincentives for voters
who relinquish their keys. For example, the Estonian ID card, which contains private keys and is
used for electronic voting, can be used to produce legally binding cryptographic signatures [77].
Voters would be unlikely to sell such cards, although coercion would remain a problem.

Another possible defense is to change authentication to use in-person registration as an alterna-
tive to private keys. Each registration teller would either be an online teller, meaning voters register
with that teller remotely, or an offline teller, meaning voters must register in person with that teller.
Offline registration tellers would be trusted to authenticate voters correctly, preventing the adversary
from masquerading as the voter. At least one offline registration teller would need to exist in any
election, ensuring that voters register in person with at least one teller.

For deployments of Civitas in which this trust assumption does not hold, we recommend re-
quiring in-person registration. This compromises of our goal of a fully remote system. But it is a
practical defense, since voting could still be done remotely, registration could be done far in advance
of the actual election, and a single credential could be reused for multiple elections.14

Trust Assumption 2. Each voter trusts at least one registration teller, and the channel from the
voter to the voter’s trusted registration teller is untappable.

13Note that these attacks are relevant only to registration, not voting, because the voter’s registration key is not used
during the voting protocol.

14Such reuse would require strengthening Trust Assumptions 2 and 6 to honesty of tellers across multiple elections.
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Constructing a fake credential requires the voter to modify at least one of the shares received
during registration. Suppose the adversary can tap all channels to registration tellers and record the
encrypted traffic between the voter and the registration tellers. Further suppose that the adversary
can corrupt the voter’s client so that it records all credential shares received from tellers. Then the
adversary can ask the client to reveal the plaintext credential shares corresponding to the encrypted
network messages. In this scenario, the voter cannot lie to the adversary about his credential shares,
meaning that the voter could now sell his credential and is no longer protected from coercion. So
an untappable channel is required for distribution of at least one share. The voter must also trust the
teller who issued that share not to reveal it.15

An untappable channel is the weakest known assumption for a coercion-resistant voting scheme [6,
25, 47, 58, 81]. Replacing this with a more practical assumption has been an open problem for at
least a decade [26]. Offline registration tellers, discussed with Trust Assumption 1, could ensure
an untappable channel by supervising the registration process. Our prototype of the client employs
enforced erasure of all credential shares once the voter’s credential is constructed, preventing the
voter from reporting shares to the adversary.

Trust Assumption 3. Voters trust their voting clients.

Voters enter votes directly into their clients. No mechanism ensures that the client will preserve
the integrity or the confidentiality of votes. A corrupt voting client could violate coercion resistance
by sending the plaintext of the voter’s credential and choice to the adversary. A corrupt client could
also violate verifiability by modifying the voter’s credential or choice before encrypting it.

Clients could be corrupted in many ways. The machine, including the network connection, could
be controlled by the adversary. Any level of the software stack, from the operating system to the
client application, could contain vulnerabilities or be corrupted by malicious code. The adversary
might even be an insider, compromising clients during their development and distribution.

Current research aims to solve this problem by changing how voters enter their votes [17, 56,
62, 93]. The voting client is decomposed into multiple (hardware and software) components, and
the voter interacts with each component to complete the voting process. For example, voting might
require interacting with a smart card to obtain a randomized ballot, then interacting with a client
to submit a vote on that ballot.16 Now the voter need not trust a single client, but instead that the
components implementing the client will not collude. Complementary research aims to leverage
trusted computing technology [89]. For example, attestation could be used to prove that no level
of the hardware or software stack has been changed from a trusted, pre-certified configuration.
Integrating these kinds of defenses into Civitas is important future work.

Note that this trust assumption does not require all voters to trust a single client implementa-
tion. Rather, voters may choose which client they trust. This client could be obtained from an
organization the voter trusts, such as their own political party or another social organization. These
organizations are free to implement their own Civitas client software on their own hardware, and
to make their source code publicly available. This freedom improves upon current direct-recording
electronic (DRE) voting systems, in which voters are often forced by local election authorities to use
particular proprietary (or closed-source) clients that are known to contain vulnerabilities [59,61,91].

15Note that a voter must know which registration teller he is trusting, which is stronger than Trust Assumptions 5 and 6.
16Another example is the use of paper as one of the components. However, this is incompatible with remote electronic

voting.
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Another advantage over DREs is that diverse clients, provided by several organizations, could re-
duce the incentive to attack Civitas by raising the cost of mounting an attack.

Requiring trusted voter clients compromises our goal of a remote voting system. Even if voters
download a client from a trusted organization, the software stack on a voter’s machine might not
be trustworthy. Thus voters might need to travel to a location where an organization they trust has
provided a client application running on a trustworthy hardware and software platform.

Trust Assumption 4. The channels on which voters cast their votes are anonymous.

Without this assumption, the adversary could observe network traffic and learn which voters
have voted, trivially violating coercion resistance—although the adversary still could not learn the
voter’s choice or credential.

Our prototype of Civitas does not implement its own anonymous channel because the construc-
tion of trustworthy anonymous channels is an orthogonal research problem. It seems likely that
existing anonymizing networks, such as Tor [33], would suffice if made sufficiently reliable.17

Trust Assumption 5. At least one of the ballot boxes to which a voter submits his vote is correct.

A correct ballot box returns all the votes that it accepted to all the tabulation tellers. This is
weaker than the standard assumption (less than a third of the ballot boxes fail) made for Byzantine
fault tolerance [15] and multi-party computation [42], which both require more expensive protocols.

Trust Assumption 6. There exists at least one honest tabulation teller.

If all the tellers were corrupted, then the adversary could trivially violate coercion resistance
by decrypting credentials and votes. This assumption is not needed for verifiability, even if all
the tellers collude or are corrupted—the proofs posted by tellers during tabulation will reveal any
attempt to cheat. Fault tolerance techniques [19, 38, 82] would increase the difficulty of corrupting
all the tellers.

Attacks on election authorities. Trust Assumptions 2, 5, and 6 allow all but one election authority
of each kind to be corrupted. But certain attacks might still be mounted:

• A corrupt registration teller might fail to issue a valid credential share to a voter. The voter
can detect this, but coercion resistance requires that the voter cannot prove that a share is valid
or invalid to a third party. Defending against this could involve the voter and another election
authority, perhaps an external auditor, jointly attempting to re-register the voter. The auditor
could then attest to the misbehavior of a registration teller.

• The bulletin board might attempt to alter messages. But this is detectable since messages are
signed. A bulletin board might also delete messages. This is an attack on availability, which
is addressed in Section 11.

• A corrupt registrar might add fictitious voters or remove legitimate voters from the electoral
roll. Each tabulation teller can defend against this by refusing to tabulate unless the electoral
roll is correct according to some external policy.

17A vote typically fits into just three packets, so scalability and timing attacks seem unlikely to present problems.
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• A corrupt supervisor might post an incorrect ballot design, stop an election early, or even
attempt to simulate an election with only one real voter. Voters and tabulation tellers should
cease to participate in the election once the supervisor exhibits such behavior.

All election authorities might be simultaneously corrupted if they all run the same software. For
example, an insider working at the software supplier might hide malicious code in the tabulation
teller software. As discussed in Trust Assumption 6, this attack could violate coercion resistance,
but it could not violate verifiability. To defend against insider attacks, election authorities should
use diverse implementations of the Civitas protocols.

Trust Assumption 7. The Decision Diffie-Hellman (DDH) and RSA assumptions hold, and SHA-
256 implements a random oracle.

DDH and RSA are standard cryptographic assumptions. The more fundamental assumption for
Civitas is DDH, as the JCJ security proof is a reduction from it.

5 Cryptographic Components
Civitas uses many cryptographic components. This section gives an overview of these; Appendix B
contains a detailed specification of the protocols. Many components require posting messages to
the bulletin board. These messages must be signed by the poster. Also, a variety of zero-knowledge
proofs are used to enforce the honest execution of protocols. These proofs are made non-interactive
via the Fiat-Shamir heuristic [37], so their security is in the random oracle model [7]. Civitas
implements a random oracle with SHA-256.

Security proof. The security of Civitas follows from the JCJ security proof [58] and the individ-
ual security proofs of each component, cited below. We give a security proof for the registration
protocol in Appendix A.

5.1 Setup phase
Keys. The supervisor posts RSA public keys representing the election authorities. These keys are
used for authentication of agents and messages. The choice of RSA is for convenience, since many
real-world organizations already have RSA keys, but could be replaced by another cryptosystem.
The tabulation tellers also generate a distributed El Gamal public key, described below. The registrar
posts each voter’s registration public key (RSA, again for convenience) and designation public key
(El Gamal).

Encryption scheme. Civitas implements a distributed El Gamal scheme similar to Brandt’s [11].
The supervisor posts a message (p, q, g) describing the cryptosystem parameters: a prime p =
2kq + 1, where q is also prime, and a generator g of the order q subgroup of Z∗p. This subgroup,
denotedM, is the message space of the cryptosystem. The tabulation tellers generate an El Gamal
public key KTT for which each teller holds a share of the corresponding private key. Encryption of
message m under key K with randomness r is denoted Enc(m; r;K). We omit r or K from this
notation when they are unimportant or clear from context. Decryption of a ciphertext c that was
encrypted under key KTT, denoted Dec(c), requires all tabulation tellers.
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El Gamal encryption is homomorphic with respect to multiplication. That is, Enc(m)·Enc(n) =
Enc(m · n). El Gamal permits a probabilistic reencryption operation, denoted Reenc(c) for a ci-
phertext c, which produces a new encryption of the same plaintext. Encryption can be made non-
malleable, preventing the use of homomorphisms and reencryption, by the use of Schnorr signa-
tures [84]. Civitas uses non-malleable encryption until the tabulation phase, where malleability is
required.

Civitas uses two zero-knowledge proofs to ensure the honesty of tellers during key gener-
ation and during decryption. The first is a proof of knowledge of a discrete logarithm due to
Schnorr [83]. Given a message v and generator g, this proof shows knowledge of an x such that
v ≡ gx (mod p).The second is a proof of equality of discrete logarithms due to Chaum and Peder-
sen [18]. Given messages v and w and generators g and h, this proof shows there exists an x such
that v ≡ gx (mod p) and w ≡ hx (mod p).

Credential generation. Civitas uses a novel construction for credentials, based on ideas found in
earlier work [26, 47, 58]. The security of this construction is proved in Appendix A.

For each voter, each registration teller i individually generates a random element ofM as private
credential share si. The corresponding public share Si is Enc(si;KTT). The registration teller posts
Si on the bulletin board and stores si for release during registration. After all tellers have posted
a share, the voter’s public credential S is publicly computable as

∏
i Enc(si;KTT), which by the

homomorphic property is equal to Enc(
∏
i si;KTT).

5.2 Voting phase
Registration. To acquire a private credential, a voter contacts each registration teller. The voter
authenticates using his registration key, then establishes a shared AES session key using the Needham-
Schroeder-Lowe [64] protocol. The voter requests registration teller i’s share si of the private cre-
dential. The registration teller responds with (si, r, S′i, D), where r is random, S′i = Enc(si; r;KTT)
and D is a designated-verifier reencryption proof (DVRP) due to Hirt and Sako [47]. The proof
shows that S′i is a reencryption of Si, the public credential share. Construction of this proof requires
the voter’s public designation key. The voter verifies that S′i was computed correctly from si and
r, then verifies the DVRP. These verifications convince the voter, and only the voter, that the pri-
vate share is correct with respect to the public share posted on the bulletin board—i.e., that Si is
an encryption of si. After retrieving all the shares, the voter constructs private credential s, where
s =

∏
i si.

Voting. To cast a vote, a voter posts an unsigned message

〈Enc(s;KTT),Enc(v;KTT), Pw, Pk〉

to some or all of the ballot boxes, where s is the voter’s private credential, v is the voter’s choice,
and Pw and Pk are zero-knowledge proofs. Pw, implemented with a 1-out-of-L reencryption proof
due to Hirt and Sako [47], shows that the vote is well-formed with respect to the ballot design of the
election. Given C = {ci | 1 ≤ i ≤ L} and c, this reencryption proof shows there exists an i such
that ci = Reenc(c). Pk, implemented by adapting a proof due to Camenisch and Stadler [13], shows
that the submitter simultaneously knows s and v. This defends against an adversary who attempts
to post functions of previously cast votes.
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Resisting coercion. To construct a fake credential, a voter chooses at least one registration teller
and substitutes a random group element s′i ∈ M for the share si that registration teller sent to the
voter. The voter can construct a DVRP that causes this fake share to appear real to the adversary,
unless the adversary has corrupted the registration teller the voter chose (in which case the adversary
already knows the real share), or unless the adversary observed the channel used by the registration
teller and voter during registration (in which case the adversary has seen the real proof). By Trust
Assumption 2, there exist some teller and channel that the adversary does not control, so it is always
possible for voters fake credentials.

5.3 Tabulation phase
Ballot boxes. Recall from Section 3 that ballot boxes are instances of an insert-only log service.
Ballot boxes have one additional function, reporting their contents at the end of an election. When
the supervisor closes the election, each ballot box posts a commitment to its contents on the bulletin
board. The supervisor then posts his own signature on all these commitments, defining the set of
votes to be tabulated. Thus, if a voter posts a vote to at least one correct ballot box, the vote will be
tabulated.18 Note that ballot boxes do not check validity of votes.

Since ballot boxes operate independently, never contacting other ballot boxes, this ballot box
construction scales easily. Moreover, this construction ensures that all votes are available for
tabulation—a requirement of universal verifiability—without expensive fault tolerance protocols.

Mix network. A mix network is used to anonymize submitted votes and authorized creden-
tials. Civitas implements a reencryption mix network made verifiable by randomized partial check-
ing [52], in which each teller in the network performs two permutations.19

Duplicate and invalid credential elimination. It would be easy to eliminate votes containing
duplicate or invalid credentials if credentials could be decrypted. However, this would fail to be
coercion-resistant, because voters’ private credentials would be revealed. Instead, a zero-knowledge
protocol called a plaintext equivalence test (PET) is used to compare ciphertexts. Given c and c′, a
PET reveals whether Dec(c) = Dec(c′), but nothing more about the plaintexts of c and c′. Civitas
implements a PET protocol due to Jakobsson and Juels [51]. For duplicate elimination, a PET must
be performed on each pair of submitted credentials. Similarly, to eliminate invalid credentials, PETs
must be performed to compare each submitted credential with every authorized credential.20 These
pairwise tests cause credential elimination to take quadratic time.
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Table 1: Modular exponentiations per block

Agent Action Protocol BB
RT Generate all credentials 4K K

Distribute all credentials 14K –
Voter Retrieve a credential 12A A

Vote 4C + 7 –
TT Retrieve data – AK +A+ 1

Verify proofs 4M(C + 1) –
Eliminate duplicates

(
M
2

)
(8A− 1) 3A

Anonymize (mixes) 2(A+ 1)(M +K) 2A
Eliminate invalids KM(8A− 1) 3A
Decrypt K(4A− 1) A

6 Scalability
There are two main challenges for scalability in Civitas. First, elimination of duplicate and invalid
credentials takes quadratic time. Second, tabulation requires each teller to perform computation for
each vote.

Our solution to both challenges is to group voters into blocks, which are virtual precincts. Like
real-world precincts, the tally for each block can be computed independently, block results are
public, and voters are anonymous within their block. Unlike real-world precincts, the assignment
into blocks need not be based on physical location. For example, voters might be assigned to blocks
in a way that is verifiably pseudorandom, reducing the risk of reprisal by the adversary against an
entire block of voters. Blocking also enables the production of early returns, in which a fraction of
blocks are tabulated to predict the outcome of the election.

Implementing blocking is straightforward. The registrar publicly assigns each voter to a block.
Each submitted vote identifies, in plaintext, the block in which its credential (supposedly) resides.
Vote proof Pk is extended to make this identifier non-malleable.

Without blocking, duplicate elimination requires O(N2) PETs, where N is the number of all
submitted votes. With blocking, O(BM2) PETs are required, where B = b VK c is the number of
blocks, V is the number of voters, K is the minimum number of voters per block, and M is the
maximum number of votes submitted in a block. Likewise, blocking reduces invalid credential
elimination from O(V N) PETs to O(BKM). The B factor in each of these terms is easily paral-
lelizable, since a different set of machines can be used to implement the tabulation tellers for each
block. Tabulation time then depends on M and K, but not V . Therefore performance can scale

18A malicious supervisor could violate this by excluding a correct ballot box. This trust in the supervisor could be
eliminated by using a more expensive agreement protocol.

19Randomized partial checking reveals some small amount of information about these permutations. In the worst case,
when all but one teller is corrupted, the size of the set within which a vote or credential is anonymous is halved. By a
result of Gomułkiewicz et al. [43], the revealed information can be made statistically small by requiring each teller to
perform a total of five permutations. We estimate this would increase tabulation time by at most 3%. Mix networks based
on zero-knowledge proofs [40, 70] would improve anonymity at the cost of more expensive verification.

20The presence of invalid credentials is an information channel. For example, if there are zero invalid credentials, then
no voter submitted a vote with a fake credential. The adversary could detect this from the PET results posted on the
bulletin board. To eliminate this channel, each teller could post a random number of votes with invalid credentials.
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independently of the number of voters.
Table 1 identifies the number of modular exponentiations performed per block by individual

agents: registration tellers (RT), tabulation tellers (TT), and voters. (Tabulation time is dominated
by modular exponentiations.) The table distinguishes protocol exponentiations, which are required
by the Civitas voting scheme regardless of the implementation of the bulletin board, from bul-
letin board (BB) exponentiations, which are required by the particular implementation used in our
prototype. BB exponentiations result from RSA signatures and verifications. Exponentiations are
counted under the assumption that there are no duplicate votes and that no voters abstain, maximiz-
ing the number of PETs required. Parameter A describes the number of election authorities of each
kind—i.e., if A = 4, then there are four registration tellers, four tabulation tellers, and four ballot
boxes. Regardless of A, there is a single bulletin board. Table 1 assumes a plurality ballot with C
candidates.

7 Implementation in Jif
Our prototype of Civitas is implemented in JifE [20], an extension of Jif 3.0 [67,69]. Jif is a security-
typed language [90] in which programs are annotated with information-flow security policies. The
Jif compiler and runtime guarantee end-to-end enforcement of these polices. Information-flow poli-
cies control both the release and propagation of information, enabling the protection of both sensi-
tive data and data derived therefrom. Information-flow policies are therefore stronger than access
control policies, which control only the release of information.

Jif security policies are expressed using the decentralized label model [68], which allows speci-
fication of confidentiality and integrity requirements of principals. Such policies are useful for con-
structing systems like Civitas, in which principals need to cooperate yet are mutually distrusting.
For example, if information is labeled with confidentiality policy RT1 � voter76, then principal
RT1 permits principal voter76 to learn the information; such a policy would be suitable for the
private credential share generated by registration teller RT1 for voter76. Similarly, if information
is labeled with integrity policy TT3 � Sup, then principal TT3 requires that only principal Sup has
influenced the information; such a policy would be suitable for the ballot design, which only the
supervisor may specify.

In general, a principal p may specify a set R of readers in confidentiality policy p � R. JifE
extends Jif with declassification and erasure policies [21], which allow principals to state conditions
on when the set of readers in a confidentiality policy may be changed.

Declassification policies allow the set of readers of information to be expanded. For example,
in the implementation of mix networks, each tabulation teller must commit to random bits. The
bits are then revealed and used to verify the mix. The security of the mix requires maintaining the
secrecy of these bits until all tellers have committed. In the code, this requirement is expressed using
a declassification policy. The policy annotating the variable storing the random bits of TTi indicates
that the information is readable only by TTi until condition AllCommitted is satisfied, upon which
the information may be declassified to be readable by all principals. AllCommitted becomes true at
the program point where all commitments have been received.

Erasure policies mandate conditions upon which the set of readers must be restricted. For ex-
ample, each registration teller must store a private credential share for each voter until the voter
requests it. After this, the teller may erase the share, ensuring that the share cannot later be dis-
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Table 2: Lines of JifE code per component

Component LOC
Tabulation teller 5,740
Common 3,173
Registration teller 1,290
Supervisor 1,138
Log service (bulletin board and ballot box) 911
Voter client 826
Registrar 308
Total 13,386

closed.21 In the code, the variable storing the share is annotated with an erasure policy indicating
that this information becomes unreadable by all principals when condition Delivered is satisfied.
Delivered becomes true at the program point where receipt of the share has been acknowledged by
the voter. The JifE compiler inserts code at that point to erase the information from memory.

Our implementation of Civitas totals about 13,000 lines of JifE code. Table 2 gives the number of
lines of code in each component; common code includes shared data structures and utility methods
for retrieving and caching election information. About 8,000 additional lines of Java code are used to
perform I/O and to implement number-theoretic operations such as encryption and zero-knowledge
proofs.

8 Ranked Voting Methods
Plurality voting, in which each voter chooses a single candidate and the winner is the candidate who
receives the most votes, is the best-known voting method. However, it is subject to the spoiler effect,
in which the presence of minor candidates affects the outcome. The spoiler effect is mitigated by
ranked voting methods, in which each voter submits a (partial or total) ordering of the candidates.
Ranked voting methods are used by many organizations and by several countries; examples of such
methods include single transferable vote (a.k.a. instant runoff), the Condorcet family of methods,
and the Borda count [10]. Ranked methods are attractive because they enable voters to express more
information about their preferences, and that information can be used to produce a better collective
decision. For example, Condorcet methods extend the principle of majority rule to ranked prefer-
ences: A candidate who would defeat every other candidate in one-on-one elections is declared the
Condorcet winner. Civitas implements a Condorcet voting method, in addition to plurality voting
and approval voting.

Coercion resistance is a challenge with ranked voting methods because ordered preferences
introduce a covert channel: Voters can encode information into low-order preferences in their votes.
For example, if there are twenty candidates, a voter’s lowest ten preferences probably will not
influence the outcome of the election, so at least 10! distinct values can be encoded, allowing voters
to covertly identify themselves. Coercing voters into using this covert channel is sometimes referred

21Erasure is a design choice that impacts recovery from voters’ accidental loss or deletion of credentials. If tellers do
not erase shares, then tellers can reissue credentials. But if tellers do erase shares, then reissue is not possible. Instead,
tellers would need to revoke lost shares and issue new shares. This is left as future work.
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to as an Italian attack.
Civitas eliminates the covert channel by encoding the voter’s ranking into

(
C
2

)
votes, where C

is the number of candidates [24]. Each vote expresses one of three preferences between candidates
i and j: (1) i is preferred over j, (2) j over i, or (3) i and j are tied.22 After votes are decrypted,
these anonymized preferences are used to select the winner. This encoding requires

(
C
2

)
separate

elections to be tabulated, but offers coercion resistance: The adversary is unable to learn more about
an individual voter’s low-order preferences than can be learned from the aggregate preferences of
all voters, which are revealed by the final tally.

It is also possible to eliminate the covert channel yet tabulate only a single election. Suppose a
ranking were encoded as a matrix m of preferences, where each cell is either 0 or 1. If m[i, j] is 1,
then the voter prefers candidate i over candidate j.23 When submitting this matrix as a choice dur-
ing voting, suppose that instead of encrypting the entire matrix, the voter instead encrypts each cell
individually in an additively homomorphic cryptosystem supporting reencryption, perhaps either ex-
ponential El Gamal [1] or Paillier [74]. The tabulation protocol would remain essentially unchanged
until the final decryption phase. The individual matrices, still encrypted, would be summed using
the homomorphic property. The resulting encrypted sum matrix, containing the aggregated voter
preferences, would then be decrypted.24 Implementation of this in Civitas is left as future work.

9 Performance
A voting system is practical only if tabulation can be completed in reasonable time, with reasonable
cost and security. Civitas offers a tradeoff between these three factors, because tabulation can be
completed more quickly by accepting higher cost or lower security.

Notions of reasonable time, cost, and security may differ depending on the election or the ob-
server. In current U.S. elections, accurate predictions of election results are available within a few
hours. Therefore, we chose a target tabulation time of five hours. The two most important parame-
ters affecting security are K, the minimum number of voters within each block, and A, the number
of authorities of each kind.25 As reasonable values for these parameters, we chose K = 100 and
A = 4. Anonymity within 100 voters seems comparable to what is available in current real-world
elections, where results are tabulated at a precinct level and observers might correlate voters with
ballots.26 Similarly, four mutually distrusting authorities might offer better oversight than real-world
elections.

Experiment design. We used Emulab [92] as an experiment testbed. The experiments ran on
machines containing 3.0 GHz Xeon processors and 1 GB of RAM, networked on a 1 Gb LAN. Note
that only tabulation tellers actually need hardware this fast, whereas voters could use substantially

22This encoding does not guarantee that voters submit a true order. Voters could instead submit votes containing
cycles, e.g., A > B, B > C, and C > A. While this is still a Condorcet method—if a Condorcet winner exists, it will
be elected—cyclic votes may introduce new possibilities for strategic voting. To eliminate this, voters could be required
to submit additional zero-knowledge proofs, establishing that no cycles exist in their votes.

23This encoding also allows voters to submit votes containing cyclic preferences, so voters might again be required to
submit additional zero-knowledge proofs.

24In general, decryption in exponential El Gamal requires taking a discrete log. But if the block size B is not overly
large, decryption could be efficiently implemented with a lookup table mapping i to gi, for 0 ≤ i ≤ B.

25Recall from Section 6 that if A = 4, then there are four registration tellers, four tabulation tellers, and four ballot
boxes.

26Random block assignment might even offer stronger anonymity than real-world elections.
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less powerful hardware without impacting performance or the voting experience. Our machines ran
Red Hat Linux 9.0 and Java 1.5.0 11. For RSA, AES, and SHA implementations, we used Bouncy
Castle JCE provider 1.33. We implemented the remaining cryptographic functionality, including El
Gamal and zero-knowledge proofs, ourselves. We used a C library, GMP 4.2.1, for implementations
of modular exponentiation and multiplication.

Key lengths were chosen to meet or exceed NIST recommendations for 2011–2030 [5]. We
used 128-bit AES keys, 2048-bit RSA keys, and 224-bit El Gamal keys from a 2048-bit group—
i.e., |p| = 2048 and |q| = 224. A modular exponentiation in this size group required about 3.7
ms.

Each experiment simulated all phases of a complete election, including all the cryptographic
protocols in Section 5. Therefore the results should be representative of a real deployment. All
experiments used plurality ballots with three candidates. No voters abstained, so N ≥ V and
M ≥ K.27 Experiments were repeated three times, and we report the sample mean. The sample
standard deviation was always less than 2% of the mean.

Setup and voting time. Generation of keys and credentials scales linearly in the number of au-
thorities and voters, respectively, and can be conducted offline. During the voting phase, voters
retrieve credential shares from registration tellers and submit votes to ballot boxes. A voter client
takes about 325 ms to acquire a credential share from a registration teller, and about 20 ms to submit
a vote to a ballot box. Thus, for four authorities, it takes a voter less than 1.4 seconds to retrieve
credentials and submit a vote. From the registration teller’s perspective, it takes about 200 ms of
CPU time to distribute a single voter’s credential share. A registration teller could therefore process
18,000 voters per hour.

Tabulation time and space. Figure 2(a) shows the results of four tabulation tellers processing
blocks sequentially, where V is a multiple of K. The data indicate that Civitas requires 39 seconds
per voter per authority to tabulate a single block, and that votes from 500 voters, in blocks of 100, can
be tabulated in five hours. (The time to combine the block tallies is negligible.) ParametersA andK
have non-linear effects on tabulation time, as shown in Figure 2(b) and Figure 2(c). Communication
increases quadratically in A, and PETs take time proportional to K2. Figure 2(c) indicates that a
block of 200 voters can be tabulated in less than five hours.

The independence of blocks can be exploited to decrease tabulation time by processing blocks
in parallel. Given a set of tabulation teller machines for each block, the data in Figure 2(a) predict
that tabulation could be completed in about 65 minutes, independent of V . Because of the linear
tradeoff between time and machines at the granularity of blocks, the remaining measurements in
this study are for tabulation of a single block.

The memory footprint of Civitas is very small. With M = 100, the active set of a tabulation
teller is never more than 8 MB. The size of the active set scales linearly in M , so modern machines
could easily fit tabulation in memory for substantially larger values ofM (and ofK, sinceK ≤M ).
The storage space needed for the entire bulletin board is less than 620 MB for an election where
K = 100, V = 100, and A = 4. Our prototype uses a verbose XML-like message format, so we
expect that storage space requirements could be reduced significantly.28

27Recall that N is the number of votes submitted and M is the maximum number of votes submitted in a block.
28Note that voters do not need to download the entire bulletin board to verify inclusion of their votes. Rather, a voter

would need to download only the list of votes (about 160 kB) used as input to the tabulation protocol, then check that his
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Figure 2: Tabulation time vs. (a) Voters: K = 100, A = 4; (b) Authorities: K = V = 100; (c)
Anonymity: V = K,A = 4; (d) Chaff: K = V = 100, A = 4
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Chaff. We refer to votes containing invalid and duplicate credentials as chaff because they are
eliminated during tabulation. Because chaff increases the number of votes in a block, it increases
tabulation time similarly to increasing anonymity parameter K. Figure 2(d) shows how tabulation
time varies as a function of the percentage of chaff votes in each block. With fraction c chaff (split
between invalid and duplicate credentials), there areM = V

1−c votes in a block. All the other graphs
in this study assume c = 0.

Cost. A government election in a stable Western democracy currently costs $1 to $3 per voter [49].
Civitas would increase the cost of computing equipment but could reduce the costs associated with
polling places and paper ballots. A dual-core version of our experiment machines is currently
available for about $1,500, so the machine cost to tabulate votes from 500 voters in five hours
(with K = 100 and A = 4) is at worst $12 per voter, and this cost could be amortized across
multiple elections. Moving to multicore CPUs would also be likely to reduce tabulation time, since
tabulation is CPU-bound (utilization is about 70–85% during our experiments), has a small memory
footprint, and can be split into parallel threads that interact infrequently. Costs could be reduced
dramatically if trust requirements permit a tabulation teller to lease compute time from a provider.29

One provider currently offers a rate of $1 per CPU per hour on processors similar in performance
to our experiment machines [88]. At this rate, tabulation for 500 voters would cost about 4¢ per
voter—clearly in the realm of practicality.

Reducing security parameters also reduces cost. For example, halvingK approximately quarters
tabulation time. So for a ten-hour, K = 50, A = 3 election, the cost per voter would be about ten
times smaller than a five-hour, K = 100, A = 4 election. El Gamal key lengths also have a
significant impact. Figure 2(c) shows that, for 224-bit keys from a 2048-bit group, K can be as high
as 200 while maintaining a tabulation time of under five hours. With 160-bit keys from a 1024-bit
group (secure, according to NIST, from 2007–2010 [5]), K can be increased to 400. Using 256-bit
keys from a 3072-bit group (secure until after 2030) currently requires decreasing K to 125.

Real-world estimates. In the 2004 general election for President of the United States, just under
2.3 million votes were reported by the City of New York Board of Elections [22]. Using the worst-
case estimate we developed above, $12 per voter, the one-time hardware cost for using Civitas to
tabulate this election would be at most $27.6 million. In comparison, Diebold submitted an estimate
in 2006 of $28.7 million in one-time costs to replace the city’s mechanical lever voting machines
with optical scan machines [30]; hardware and software costs accounted for $10.2 million of this
estimate [31]. Although we cannot make any strong comparisons, the cost of Civitas does seem to
be about the same order of magnitude.

10 Related Work
Voting schemes. Cryptographic voting schemes can be divided into three categories, based on the
technique used to anonymize votes. Here we cite a few examples of each type. In schemes based
on homomorphic encryption [8, 26, 47, 80], voters submit encrypted votes that are never decrypted.

vote is in this list.
29Essentially, this means trusting the provider with the teller’s El Gamal private key share for that election so the

provider can compute decryption shares. To avoid giving the provider the key share, computation might be split between
the provider and teller, with the teller computing only these decryption shares. This would result in the teller performing
only about 10% of the total number of modular exponentiations.
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Rather, the submitted ciphertexts are combined (using some operation that commutes with encryp-
tion) to produce a single ciphertext containing the election tally, which is then decrypted. Blind
signature schemes [39,72,73] split the election authority into an authenticator and tallier. The voter
authenticates to the authenticator, presents a blinded vote, and obtains the authenticator’s signature
on the blinded vote. The voter unblinds the signed vote and submits it via an anonymized channel
to the tallier. In mix network schemes [6,16,65,81], voters authenticate and submit encrypted votes.
Votes are anonymized using a mix, and anonymized votes are then decrypted. JCJ and Civitas are
both based on mix networks.

To optimize JCJ, Smith [87] proposes replacing PETs with reencryption into a deterministic,
distributed cryptosystem. However, the proposed construction is insecure. The proposed encryp-
tion function is Enc(m; z) = mz , where z is a secret key distributed among the tellers. But to test
whether s is a real private credential, the adversary can inject a vote using s2 as the private cre-
dential. After the proposed encryption function is applied during invalid credential elimination, the
adversary can test whether any submitted credential is the square of any authorized credential. If
so, then s is real with high probability. Araújo et al. [2] are studying another possible replacement
for PETs, based on group signatures.

Civitas differs from JCJ in the following ways:

• JCJ assumes a single trusted registration authority; Civitas factors this into a registrar and a set
of mutually distrusting registration tellers. As part of this, Civitas introduces a construction
of credential shares.

• JCJ does not specify a means of distributing credentials; Civitas introduces a protocol for this
and proves its security.

• JCJ has voters post votes to the bulletin board; Civitas introduces ballot boxes for vote storage.

• JCJ supports plurality voting; Civitas generalizes this to include approval and ranked voting
methods.

• JCJ left many of the cryptographic components described in Section 5 unspecified (though
JCJ also provided helpful suggestions for possible implementations); Civitas provides con-
crete instantiations of all the cryptographic components in the voting scheme.

• JCJ, as a voting scheme, did not study the scalability of tabulation or conduct experiments;
Civitas, as both a scheme and a system, introduces blocking, studies its scalability, and reports
experimental results.

Voting systems. To our knowledge, Civitas offers stronger coercion resistance than other imple-
mented voting systems. Sensus [27], based on a blind signature scheme known as FOO92 [39],
offers no defense against coercion. Neither does EVOX [46], also based on FOO92. Both systems
allow a single malicious election authority to vote on behalf of voters who abstain. EVOX-MA [34]
addresses this by distributing authority functionality. REVS [57,63] extends EVOX-MA to tolerate
failure of distributed components, but does not address coercion. ElectMe [85] is based on blind
signatures and claims to be coercion resistant, but it assumes the adversary cannot corrupt election
authorities. If the adversary learns the ciphertext of a voter’s “ticket,” the scheme fails to be receipt-
free. ElectMe also is not universally verifiable. Voters can verify their votes are recorded correctly,
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but the computation of the tally is not publicly verifiable. Adder [60] implements a homomorphic
scheme in which voters authenticate to a “gatekeeper.” If the adversary were to corrupt this single
component, then Adder would fail to be coercion-resistant.

Kiayias [60] surveys several voting systems from the commercial world. These proprietary
systems do not generally make their implementations publicly or freely available, nor do they appear
to offer coercion resistance. The California top-to-bottom review [91] of commercial electronic
voting systems suggests that these systems offer completely inadequate security.

The W-Voting system [62] offers limited coercion resistance. It requires voters to sign votes,
which appears susceptible to attacks in which a coercer insists that the voter abstain or submit a vote
prepared by the coercer. It also allows voters to submit new votes, which replace older votes. So
unlike Civitas, an adversary could successfully coerce a voter by forcing the voter to submit a new
vote, then keeping the voter under surveillance until the end of the election.

Prêt à Voter 2006 [79] offers a weak form of coercion resistance, if voting is supervised. The
construction of ballots depends on non-uniformly distributed seeds, which might enable the adver-
sary to learn information about how voters voted. In remote settings, Prêt à Voter offers no coercion
resistance. The adversary, by observing the voter during voting, will learn what vote was cast.

VoteHere [70] offers coercion resistance, assuming a supervised voting environment. Removing
this assumption seems non-trivial, since the supervised environment includes a voting device with
a trusted random number generator. This generator could be subverted in a remote setting, enabling
the adversary to learn the voter’s vote.

The primary goal of Punchscan [76] is high integrity verification of optical scan ballots. Punch-
scan does not claim to provide coercion resistance. Instead, under the assumption that voting takes
place in a supervised environment, Punchscan offers a weaker property: The adversary learns noth-
ing by observing data revealed during tabulation. This assumption rules out coercion-resistant re-
mote voting. For confidentiality, Punchscan assumes that the election authority is not corrupted,
even partially, by the adversary.

Voting methods. Smith [86] proposes implementations of single transferrable vote (STV) and
range voting that defend against Italian attacks. Heather [44] proposes an implementation of STV
for Prêt à Voter.

11 Toward a Secure Voting System
Some open technical problems must be solved before Civitas, or a system like it, could be used to
secure national elections. Two such problems are that Civitas assumes a trusted voting client, and
that in practice, the best way to satisfy two of the Civitas trust assumptions is in-person registration.

We did not address availability in this work. However, the design of Civitas accommodates
complementary techniques for achieving availability. To improve the availability of election author-
ities, they could be implemented as Byzantine fault-tolerant services [15, 75]. Also, the encryption
scheme used by Civitas could be generalized from the current distributed scheme to a threshold
scheme. This would enable election results to be computed even if some tabulation tellers become
unresponsive or exhibit faulty behavior, such as posting invalid zero-knowledge proofs.30 For a
threshold scheme requiring k out of n tabulation tellers to participate in decryption, no more than

30Recovery from these faults would need to ensure that the adversary cannot exploit any partial information from
aborted subphases.
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k − 1 tellers may be corrupted, otherwise coercion resistance could be violated. For availability, a
new trust assumption must be added: At least k tellers do not fail.31

Application-level denial of service is particularly problematic, because an adversary could insert
chaff to inflate tabulation time. A possible defense, in addition to standard techniques such as rate-
limiting and puzzles, would be to require a block capability in each submitted vote. The adversary
would need to learn the capability for each block, individually, to successfully inflate tabulation
time for that block. Another possible defense is to weaken coercion resistance so that chaff votes
could be detected without requiring PETs. These defenses are left as future work.

We have not investigated the usability of Civitas, although usability is more important than
security to some voters [45]. Management of credentials is an interesting problem for the use
of Civitas. Voters might find generating fake credentials, storing and distinguishing real and fake
credentials (especially over a long term), and lying convincingly to an adversary to be quite difficult.
Recovery of lost credentials is also an open problem.

There are open non-technical problems as well; we give three examples. First, some people
believe that any use of cryptography in a voting system makes the system too opaque for the general
public to accept.32 Second, remote electronic voting requires voters to have access to computers,
but not all people have such access now. Third, some real-world attacks, such as attempts to confuse
or misinform voters about the dates, significance, and procedures of elections, are not characterized
by formal security models. Mitigation of such attacks is important for real-world deployments, but
beyond the scope of this paper.

Finally, a report on the security of a real-world remote voting system, SERVE, identifies a
number of open problems in electronic voting [55]. These problems include transparency of voter
clients, vulnerability of voter clients to malware, and vulnerability of the ballot boxes to denial-of-
service attacks that could lead to large-scale or selective disenfranchisement. However, Civitas does
address other problems raised by the report: the voter client is not a DRE, trust is distributed over a
set of election authorities, voters can verify their votes are counted, spoofing of election authorities
is not possible due to the use of digital signatures, vote buying is eliminated by coercion resistance,
and election integrity is ensured by verifiability.

12 Conclusion
This paper describes the design, implementation, and evaluation of Civitas, a remote voting system
whose underlying voting scheme is proved secure under carefully articulated trust assumptions. To
our knowledge, this has not been done before. Civitas provides stronger security than previously
implemented electronic voting systems. Experimental results show that cost, tabulation time, and
security can be practical for real-world elections.

Civitas is based on a previously-known voting scheme, but elaborating the scheme into an im-
plemented system led to new technical advances: a secure registration protocol and a scalable vote
storage system. Civitas thus contributes to both the theory and practice of electronic voting. But
perhaps the most important contribution of this work is evidence that secure electronic voting could
be made possible. We are optimistic about the future of electronic voting systems constructed, like

31The adversary could increase tabulation time by forcing at most n − k restarts. But as long as no more than k − 1
tellers are corrupted, the adversary cannot successfully cause tabulation to be aborted.

32Our stance is that it is unnecessary to convince the general public directly. Rather, we need to convince experts by
using principled techniques that put security on firm mathematical foundations.
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Civitas, using principled techniques.

Website
The accompanying technical report and prototype source code are available from:

http://www.cs.cornell.edu/projects/civitas
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A Security of Registration
The JCJ scheme assumed a registrar R, which was trusted to generate and to maintain the con-
fidentiality of private credentials. Civitas distributes this functionality and trust over a set REG
of registration tellers. We must show that REG securely implements R. In particular, the Civitas
registration scheme is coercion-resistant if:

1. The private credentials generated by REG are uniformly distributed, and

2. Fake credentials are indistinguishable from real credentials.

(These requirements were extracted from steps 2 and 5 of the JCJ simulation proof of coercion
resistance.) We prove below that Civitas satisfies these requirements.

Assume that REG consists of only two tellers, RTH and RTC . Teller RTH is an honest teller,
whereas RTC is corrupted by the adversary. This is without loss of generality, since Trust Assump-
tion 2 assumes a single honest teller, and the actions of multiple corrupted tellers can be simulated
by a single corrupt teller. The proofs below could be extended without difficulty to include multiple
honest tellers.

Let (Gen, Enc, Dec) be a CCA2-secure (i.e., non-malleable) public-key encryption scheme.
Let M be the message space and O be the space of random coins. Let ≈ denote computational
indistinguishability and← denote uniformly random sampling.

Let sC ∈M be the private credential share generated for a voter by RTC , and similarly for sH .
Then the voter’s private credential is s = sH · sC . Let the voter’s public credential shares be SC and
SH , and public credential be S.

A.1 Uniformly distributed credentials
To generate a credential share, an honest registration teller chooses a uniformly random element sH
fromM and posts SH = Enc(sH) on the bulletin board. A corrupt registration teller might then
attempt to use SH to force the credential to be non-uniformly distributed. This is described by the
following experiment:

GenExp(n, b) =
KTT, kTT ← Gen(1n);
sH ←M; SH ← Enc(sH);
SC ← RTC(KTT, SH); sc ← DeckTT(SC);
s = sH · sC ;
u←M;
if b then

output s
else

output u.

If b = 1, the credential generated by the tellers is output, otherwise a uniformly random credential
is output. We want to show that, to an adversary, these two cases are indistinguishable.

Intuitively, this is the case because the encryption scheme is non-malleable: given SH , the
corrupt teller cannot construct any function of sH . However, two additional technical conditions,
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described below, need to be met to employ this argument. To establish that these conditions hold, af-
ter both public credential shares are posted on the bulletin board, the honest teller uses an additional
publicly-computable algorithm Ver to audit the share posted by the other teller. This algorithm
verifies that:

1. Share SC is a member of the ciphertext space, and

2. SH 6= SC—i.e., that RTC did not simply copy the share posted by RTH .

If verification fails, the honest teller reports the other teller as corrupt and refuses to proceed. Define
a compliant teller as one that, on input SH , outputs only SC such that Ver(SH , SC) succeeds.

The following lemma says that if verification succeeds, then private credentials are uniformly
distributed.

Lemma 1. For all PPT compliant RTC , {GenExp(n, 0)}n∈N ≈ {GenExp(n, 1)}n∈N.

Proof. Define three hybrids:

H0 = {sC · sH} = GenExp(n, 1)
H1 = {r ←M : sC · r}
H2 = {u} = GenExp(n, 0).

To show that H0 ≈ H1, assume for contradiction that there exists a distinguisher D that has some
non-negligible advantage in distinguishing H0 and H1. Using D, we can construct a machine A
that breaks the CCA2-security of the encryption scheme, as follows. Machine A is given KTT,
a decryption oracle for kTT, challenges m0 and m1, and a ciphertext c that encrypts one of the
challenges. It then constructs instances of H0 and H1 where SH = c, sH = m0, and r = m1.

Note that constructing these instances requires A to use its decryption oracle, after receiving
challenge c, to compute Dec(SC). By the definition of CCA2, the oracle will not reply to this
request if SC = c, which is equivalent to SC = SH . However, in this case A need not succeed,
because verification will fail. This means that RTC is not compliant, making the antecedent of the
lemma become false.

Machine A then asks D to distinguish the two instances. The response of D indicates whether
c is an encryption of m0 or m1. Machine A therefore has a non-negligible advantage in breaking
CCA-2 security, but this is a contradiction. So D cannot exist, and we have H0 ≈ H1.

To show that H1 ≈ H2, note that sC is independent of r. Thus, since (M, ·) is a group and r is
uniformly distributed, sC · r is uniformly distributed, as is u.

By the polynomial transitivity of ≈, we conclude H0 ≈ H2.

The above experiment and lemma consider generating credentials for only a single voter at a
time. However, credentials for many voters may be generated concurrently. In this case, we extend
Ver to prevent copying shares across voters.

A.2 Indistinguishability of fake and real credentials

Let (DVRP, D̃VRP) be a designated-verifier reencryption proof (DVRP) [47]. This is a proof that ei-
ther the prover knows the private key k corresponding to the public keyK of the verifier, or that two
ciphertexts c and c′ decrypt to the same plaintext. A valid DVRP, constructed as DVRP(K, c, c′;w),
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is produced by a prover using a witness w to prove c′ is a reencryption of c. A fake DVRP, con-
structed as D̃VRP(K, c, c′; k), is produced by a verifier, and proves knowledge of k. Intuitively, the
key security property is that a valid proof is indistinguishable from a fake proof; definitions can be
found in Jakobsson et al. [53].

To distribute a credential share s to voter V , an honest registration teller sends

(s, r′,DVRP(KV , S, S
′;w))

to the voter, where S = Enc(s; r;KTT) is the public share posted on the bulletin board, S′ =
Enc(s; r′;KTT), and witness w is a function of r and r′. This establishes to the voter that S′

is an encryption of s, and S′ is a reencryption of S. The security of this registration scheme is
fundamentally based on the ability, resulting from the DVRP, of voters to lie about the credential
share. This is described by the following experiment:

RegExp(n, b) =
KTT, kTT ← Gen(1n);
KV , kV ← Gen(1n);
s←M; r ← O; r′ ← O;
S ← Enc(s; r;KTT); S′ ← Enc(s; r′;KTT);
P ← DVRP(KV , S, S

′;w);
s̃←M; r̃ ← O;
S̃ ← Enc(s̃; r̃;KTT);
P̃ ← D̃VRP(KV , S, S̃; kV );
if b then

output (KTT,KV , S, s, r
′, P )

else
output (KTT,KV , S, s̃, r̃, P̃ ).

If b = 1, the voter tells the truth about his share, otherwise he lies and fakes a DVRP. The following
lemma says that, to an adversary, these two cases are indistinguishable.

Lemma 2. {RegExp(n, 0)}n∈N ≈ {RegExp(n, 1)}n∈N

Proof. Define three hybrids:

H0 = {KTT,KV , S, s, r
′, P} = RegExp(n, 0)

H1 = {KTT,KV , S, s, r
′, P̃ ′}

H2 = {KTT,KV , S, s̃, r̃, P̃} = RegExp(n, 1),

where P̃ ′ = D̃VRP(KV , S, S
′; kV ). By the definition of a designated-verifier proof, H0 ≈ H1.

To show that H1 ≈ H2, assume for contradiction that there exists a distinguisher D that has
some non-negligible advantage in distinguishing H1 and H2. Using D, we can construct a machine
A that breaks the indistinguishability of the encryption scheme, as follows. Machine A is given
KTT, challengesm0 andm1, and a ciphertext c that encrypts one of the challenges. It then constructs
instances of H1 and H2, where S = c, s = s̃ = m0, and other values are sampled randomly, and
asks D to distinguish them. Note that A can construct a fake DVRP because it generates the key
pair (KV , kV ).

By the polynomial transitivity of indistinguishability, we conclude H0 ≈ H2.
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Let Cred be the view of the adversary when the voter presents a real credential and FakeCred
be the view from a fake credential, where

Cred = {KTT,KV , SH , sH , r
′
H , PH , SC , sC , r

′
C , PC}

FakeCred = {KTT,KV , SH , s̃H , r̃H , P̃H , SC , sC , r
′
C , PC}.

Indistinguishability of real and fake credentials, and the security of REG, then follows, as the voter
can lie about share sH .

Corollary 1. Cred ≈ FakeCred

Proof. Immediate from Lemma 2.

Theorem 1. Registration is coercion-resistant.

Proof. Immediate from Lemma 1 and Corollary 1.

32



B Protocol Specification
In the following protocols, El Gamal cryptosystem parameters (p, q, g) are implicitly used as input
to all protocols (except parameter generation itself). A hash function, denoted hash , is used in some
protocols. In zero-knowledge proofs, hash is assumed to implement a random oracle; elsewhere, it
must be collision-resistant and one-way. Let O be a space of random bits of appropriate length in
each context that it is used.

B.1 Encryption scheme
Civitas implements an El Gamal encryption scheme over a multiplicative group of integers modulo
a prime p, where p = 2kq+1 and q is also prime. The message spaceM of this scheme is the order
q subgroup of Z∗p. The plaintext space is Zq. Plaintexts must be encoded into the message space
because El Gamal encryption leaks the (extended) Legendre symbol of the plaintext [9].

The algorithms below describe standard, non-malleable, and distributed constructions of El Ga-
mal encryption. An algorithm for distributed encryption is omitted because it is identical to the
standard algorithm. The standard construction is due to El Gamal [41]; non-malleable, Schnorr and
Jakobsson [84]; and distributed, Brandt [11].

ALGORITHM: El Gamal Parameter Generation

Due to: Our adaptation of the DSA parameter generation algorithm [71]
Input: Security parameters l and k
Output: Parameters (p, q, g), where |p| = l and |q| = k

1. Select a random k-bit prime q

2. Select a random l-bit number p. Round p − 1 down to a multiple of 2q by setting p equal to
p− (p mod 2q) + 1. Unless p is prime and |p| = l, repeat. After 2log2(l)+2 tries, start over by
picking a new q.

3. h← [1..p− 1]; g = h(p−1)/q mod p; repeat until g 6≡ 1 (mod p) and g 6≡ −1 (mod p)

4. Output (p, q, g)

ALGORITHM: El Gamal Key Generation

Input: El Gamal parameters (p, q, g)
Output: Public key y, private key x

1. x← Z∗q

2. y = gx mod p

3. Output (y, x)
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ALGORITHM: Encode

Input: m ∈ Z∗q
Output: M ∈M

1. M = gm mod p

ALGORITHM: El Gamal Encryption

Input: Public key y, message m ∈ Z∗q
Output: Enc(m; y)

1. M = Encode(m)

2. r ← Z∗q

3. Output (gr mod p,Myr mod p)

We write Enc(m; r; y) to denote the output of Enc for a given, rather than randomly sampled,
choice of r. We also write Enc−(M ; y) to denote the output of Enc when the Encode step is skipped.
This is only done when M is already guaranteed to be in message space M. Note that the main
body of the paper applies encryption only to to elements ofM. Thus, Enc(·) in the main body is
equivalent to Enc−(·) in this appendix.

ALGORITHM: El Gamal Reencryption

Input: Public key y, ciphertext c = (a, b)
Output: Reenc(c)

1. r ← Z∗q

2. Output (agr mod p, byr mod p)

As with encryption, we write Reenc(c; r) to denote output of Reenc for a given r.

ALGORITHM: El Gamal Decryption

Input: Private key x, ciphertext c = (a, b)
Output: Dec(c;x)

1. M = b
ax mod p

2. Output M . Note that M has not been decoded to an element in Z∗q . Doing so is apparently
an open problem, unless p is a safe prime (i.e., k = 1)—in which case, the Legendre symbol
can be used for encoding and decoding.
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ALGORITHM: Non-Malleable El Gamal Encryption

Input: Public key y, message m ∈ Z∗q
Output: NMEnc(m; y)

1. r, s← Z∗q

2. (a, b) = Enc(m; r; y)

3. c = hash(gs mod p, a, b) mod q

4. d = (s+ cr) mod q

5. Output (a, b, c, d)

El Gamal encryption is made non-malleable here by the use of a Schnorr signature (c, d) on the
ciphertext (a, b).

ALGORITHM: Non-Malleable El Gamal Decryption

Input: Private key x, ciphertext e = (a, b, c, d)
Output: NMDec(e;x)

1. V = hash(gda−c mod p, a, b) mod q

2. Abort if V 6= c

3. Output Dec((a, b);x)

ALGORITHM: Credential Encryption

Input: Public key KTT, private credential share s ∈M,
Randomization factor r ∈ Z∗q ,
Identifiers of registration teller, rid , and voter, vid

Output: CredEnc(s; r;KTT; rid , vid)

1. t← Z∗q

2. (a, b) = Enc(s; r;KTT)

3. c = hash(gt mod p, a, b, rid , vid) mod q

4. d = (t+ cr) mod q

5. Output (a, b, c, d)

Credential encryption is a specialization of non-malleable encryption: the credential need not
be encoded into M, the randomization factor is provided, and the teller and voter identifiers are
included in the hash used to construct the challenge for the Schnorr signature on the ciphertext.
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ALGORITHM: Credential Verification

Input: Public credential share S = (a, b, c, d)
Identifiers of registration teller, rid , and voter, vid

Output: CredVer(S; rid , vid)

1. V = hash(gda−c mod p, a, b, rid , vid) mod q

2. Verify V = c

Credential verification CredVer implements function Ver used in the proof of uniformly dis-
tributed credential generation.

ALGORITHM: Commitment

Input: Message m
Output: Commit(m)

1. Output hash(m)

PROTOCOL: Distributed El Gamal Key Generation

Public input: Parameters (p, q, g)
Output: Public key Y , public key shares yi, private key shares xi

1. Si: xi ← Z∗q ; yi = gxi mod p

2. Si: Publish Commit(yi)

3. Si: Barrier: wait until all commitments are available

4. Si: Publish yi and proof KnowDlog(g, yi)

5. Si: Verify all commitments and proofs

6. Y =
∏
i yi mod p is the distributed public key

7. X =
∑

i xi mod q is the distributed private key
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PROTOCOL: Distributed El Gamal Decryption

Public input: Ciphertext c = (a, b), public key shares yi
Private input (Si): Private key share xi
Output: DistDec(c;X)

1. Si: Publish share ai = axi mod p and proof EqDlogs(g, a, yi, ai)

2. Si: Verify all proofs

3. A =
∏
i ai mod p

4. M = b
A mod p

5. Output M . See above note on El Gamal Decryption.
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B.2 Zero-knowledge proofs

PROTOCOL: KnowDlog

Due to: Schnorr [83]
Principals: Prover P and Verifier V
Public input: h, v
Private input (P ): x s.t. v ≡ hx (mod p)

1. P : Compute:

• z ← Zq
• a = hz mod p

• c = hash(v, a) mod q

• r = (z + cx) mod q

2. P → V : a, c, r

3. V : Verify hr ≡ avc (mod p).

PROTOCOL: EqDlogs

Due to: Chaum and Pedersen [18]
Principals: Prover P and Verifier V
Public input: f, h, v, w
Private input (P ): x s.t. v ≡ fx (mod p) and w ≡ hx (mod p)

1. P : Compute:

• z ← Zq
• a = fz mod p

• b = hz mod p

• c = hash(v, w, a, b) mod q

• r = (z + cx) mod q

2. P → V : a, b, c, r

3. V : Verify f r ≡ avc (mod p) and hr ≡ bwc (mod p).
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PROTOCOL: DVRP

Due to: Hirt and Sako [47]
Principals: Prover P and Verifier V
Public input: Public key hV of V

El Gamal ciphertexts e = (x, y) and e′ = (x′, y′)
Public key h under which e and e′ are encrypted
Let E = (e, e′)

Private input (P ): ζ s.t. x′ ≡ xgζ (mod p) and y′ ≡ yhζ (mod p)
Output: DVRP(hV , e, e′; ζ)

1. P : Compute:

• d,w, r ← Zq
• a = gd mod p

• b = hd mod p

• s = gw(hV )r mod p

• c = hash(E, a, b, s) mod q

• u = (d+ ζ(c+ w)) mod q

2. P → V : c, w, r, u

3. V : Compute:

• a′ = gu/(x′/x)c+w mod p

• b′ = hu/(y′/y)c+w mod p

• s′ = gw(hV )r mod p

• c′ = hash(E, a′, b′, s′) mod q

4. V : Verify c = c′
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PROTOCOL: FakeDVRP

Due to: Hirt and Sako [47]
Principals: Prover P
Public input: Public key hP of P

El Gamal ciphertexts e = (x, y) and ẽ = (x̃, ỹ)
Public key h under which e and ẽ are encrypted
Let Ẽ = (e, ẽ)

Private input (P ): Private key zP of P
Output: D̃VRP(hP , e, ẽ; zP )

1. P : Compute:

• α, β, ũ← Zq
• ã = gũ/(x̃/x)α mod p

• b̃ = hũ/(ỹ/y)α mod p

• s̃ = gβ mod p

• c̃ = hash(Ẽ, ã, b̃, s̃) mod q

• w̃ = (α− c̃) mod q

• r̃ = (β − w̃)/(zP ) mod q

2. P → V : c̃, w̃, r̃, ũ

3. V : c̃, w̃, r̃, ũ will verify as a DVRP, as above.
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PROTOCOL: ReencPf

Due to: Hirt and Sako [47]
Principals: Prover P and Verifier V
Public input: L ∈ N

C = {(ui, vi) | 1 ≤ i ≤ L}
c = (u, v)

Private input (P ): t ∈ [1..L]
r ∈ Zq s.t. (u, v) = (grut mod p, yrvt mod p)

1. P : Compute:

• di, ri ← Zq, i ∈ [1..L]

• {(ai, bi) | i ∈ [1..L]}, where:

ai = (ui
u )digri mod p

bi = (vi
v )diyri mod p

• E = u, v, u1, . . . , uL, v1, . . . , vL

• c = hash(E, a1, . . . , aL, b1, . . . , bL) mod q

• w = (−rdt + rt) mod q

• D = c− (
∑

i∈[1..t−1,t+1..L] di) mod q

• R = (w + rd′t) mod q

• dvi =
{
di : i 6= t
D : i = t

• rvi =
{
ri : i 6= t
R : i = t

2. P → V : (dv1, . . . , d
v
L, r

v
1 , . . . , r

v
L)

3. V : Compute:

• {(avi , bvi ) | i ∈ [1..L]}, where:

avi = (ui
u )d

v
i gr

v
i mod p

bvi = (vi
v )d

v
i yr

v
i mod p

• c′ = hash(E, av1, . . . , a
v
L, b

v
1, . . . , b

v
L) mod q

• D′ =
∑

i∈[1..L] d
v
i mod q

4. V : Verify c′ = D′
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PROTOCOL: VotePf

Due to: Camenisch and Stadler [13]
Principals: Prover P and Verifier V
Public input: Encrypted credential (a1, b1)

Encrypted choice (a2, b2)
Vote context ctx (election identifier, etc.)
Let E = (g, a1, b1, a2, b2, ctx )

Private input (P ): α1, α2 s.t. ai ≡ gαi (mod p)

1. P : Compute:

• r1, r2 ← Zq
• c = hash(E, gr1 mod p, gr2 mod p) mod q

• s1 = (r1 − cα1) mod q

• s2 = (r2 − cα2) mod q

2. P → V : c, s1, s2

3. V : Compute c′ = hash(E, gs1ac1, g
s2ac2) mod q

4. V : Verify c = c′
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B.3 Main protocols

PROTOCOL: Plaintext Equivalence Test (PET)

Due to: Jakobsson and Juels [51]
Principals: Tabulation tellers TTi
Public input: cj = Enc(mj ;KTT) = (aj , bj) for j ∈ {1, 2}
Private input (TTi): Private key share xi

Let R = (d, e) = (a1/a2, b1/b2)
Output: If m1 = m2 then 1 else 0

1. TTi: zi ← Z∗q ; (di, ei) = (dzi , ezi)

2. TTi: Publish Commit(di, ei)

3. TTi: Barrier: wait until all commitments are available

4. TTi: Publish (di, ei) and proof EqDlogs(d, e, di, ei)

5. TTi: Verify all commitments and proofs

6. Let c′ = (
∏
i di,

∏
i ei)

7. All TT: Compute m′ = DistDec(c′) using private key shares

8. If m′ = 1 then output 1 else output 0

ALGORITHM: Mix

Due to: Jakobsson, Juels, and Rivest [52]
Input: List L of ciphertexts [c1, . . . , cm]

Verification direction dir ∈ {in, out}
Output: RPC reencryption mix of L

1. π ← Space of permutations over m elements

2. If dir = in then p = π else p = π−1

3. r1 ← Z∗q . . . ; rm ← Z∗q ; w1 ← O; . . . ; wm ← O

4. LR = [Reenc(cπ(1); r1), . . . ,Reenc(cπ(m); rm)]

5. LC = [Commit(w1, p(1)), . . . ,Commit(wm, p(m))]

6. Output LR, LC
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PROTOCOL: MixNet

Due to: Jakobsson, Juels, and Rivest [52]
Principals: Tabulation tellers TT1, . . . ,TTn
Public input: List L of ciphertexts [c1, . . . , cm]
Output: Anonymization of L

1. For i = 1 to n, sequentially:

(a) Let Mixi,j denote the jth mix performed by the ith teller.
Define Mix0,2.LR = L.

(b) Let L1 = Mixi−1,2.LR

(c) TTi : Publish Mixi,1 = Mix(L1, out)

(d) Let L2 = Mixi,1.LR

(e) TTi : Publish Mixi,2 = Mix(L2, in)

(f) TTi : qi ← O; publish Commit(qi)

2. All TTi: Publish qi; verify all other tellers’ commitments

3. Let Q = hash(q1, . . . , qn)

4. All TTi:

(a) Let Qi = hash(Q, i)

(b) For j in [1..m], publish rj , wj , and p(j) from Mixi,1+Qi[j]

(c) Verify all commitments (w and p) and reencryptions (r) from all other tellers, i.e.:

i. Verify wj and p(j) against Mixi,1+Qi[j].LC [j]
ii. If Qi[j] = 0 then verify

Reenc(Mixi−1,2.LR[p(j)]; rj) = Mixi,1.LR[j],

else if Qi[j] = 1 then verify

Reenc(Mixi,1.LR[j]; rj) = Mixi,2.LR[p(j)].

5. Output Mixn,2.LR
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PROTOCOL: Register

Due to: Needham-Schroeder-Lowe [64] (steps 1–8)
Our adaptation of ideas from [26, 47, 58] (steps 9–11)

Principals: Registration teller RTi and Voter V
Public input: KTT, KRTi

Voter’s El Gamal public designation key KVE

Voter’s RSA public registration key KVR

Identifiers of election (eid ), voter (vid ), teller (rid ), and block (bid )
Public credential Si = CredEnc(si; r;KTT; rid ,mathitvid)

Private input (RTi): Private credential si ∈M and encryption factor r ∈ Z∗q
Private input (V ): RSA private registration key kVR

1. V : NV ← N

2. V → RTi: EncRSA(eid , vid , NV ;KRTi)

3. RTi: Verify that vid is a voter in block bid in election eid , and that for all j, Sj is available
and CredVer(Sj ; rid j , vid) succeeds.

4. RTi: NR ← N ; k ← GenAES(1l)

5. RTi → V : EncRSA(rid , NR, NV , k;KVR
)

6. V : Verify rid and NV

7. V → RTi: NR

8. RTi: Verify NR

9. RTi: r′ ← Z∗q ; w = r′ − r; S′i = Enc−EG(si; r′;KTT)

10. RTi → V : EncAES(si, r′,DVRP(KVE
, Si, S

′
i;w), bid); k)

11. V : Verify S′i = Enc−EG(si; r′;KTT), and verify DVRP against Si from bulletin board

In Register, N is the space of nonces and l is the security parameter for AES.
To register, voter V completes Register with each registration teller RTi. After constructing a

complete private credential s =
∏
i si, the voter may erase all shares si, DVRPs, and session key k.

As discussed in Section 5, the use of RSA could be replaced by another cryptosystem, but the
voter’s El Gamal key is necessary for the DVRP. The use of AES could similarly be replaced by
another cryptosystem, perhaps even a construction of deniable encryption [14]. Register does not
use non-malleable encryption in constructing S′i because the registration teller sends plaintext si
along with S′i.

The authentication protocol used in steps 1–8 of Register is not strictly an implementation of
Needham-Schroeder-Lowe because step 7 is not encrypted under KRTi . This is admissible because
nonce NR is not used to construct the session key k. In this respect, the authentication protocol is
similar to ISO/IEC 11770-3 Key Transport Mechanism 6 [50].
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ALGORITHM: Fake credential

Due to: Our adaptation of ideas from [26, 47, 58]
Input: Private credential shares si, public credential shares Si, encryption factors ri, and

DVRPs Di from each registration teller RTi obtained from Register
Index set L of registration tellers for which to fake shares
Voter’s designation key pair (KVE

, kVE
)

Output: Fake private credential shares s̃i, fake encryption factors r̃i, and fake
DVRPs D̃i for each registration teller RTi

1. For all i ∈ L:

• r̃i ← Z∗q
• s̃i ←M
• S̃i = Enc−(s̃i; r̃i;KTT)

• D̃i = D̃VRP(KVE
, Si, S̃i; kVE

)

2. For all i /∈ L:

• r̃i = ri

• s̃i = si

• S̃i = Enc−(si; ri;KTT)

• D̃i = D̃VRP(KVE
, Si, S̃i; kVE

)

3. Output (s̃i, r̃i, D̃i) for all i

PROTOCOL: Vote

Due to: Juels, Catalano, and Jakobsson [58]
Principals: Voter V , ballot boxes
Public input: KTT, vote context ctx (including at least the election id and the block id)

Well-known choice ciphertext list C = (c1, . . . , cL)
Private input (V ): Private credential s and candidate choice ct for some t

1. V : rs ← Z∗q ; es = Enc−(s; rs;KTT)

2. V : rv ← Z∗q ; ev = Reenc(ct; rv)

3. V : Pw = VotePf(es, et , ctx , rs, rv)

4. V : Pk = ReencPf(C, ev , t, rv)

5. V : vote = (es, ev , Pw, Pk)

6. V → ballot boxes: vote

This voting protocol refines the protocol described in Section 5 in one important way: The en-
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crypted choice the voter submits is actually a reencryption of a well-known ciphertext representing
that choice. The supervisor posts these well-known ciphertexts on the bulletin board during the
setup phase. The ciphertext for choice i is represented by well-known ciphertext Enc(i; 0). Vote
does not use non-malleable encryption in constructing es because VotePf proves knowledge of
plaintext s.

PROTOCOL: Tabulate

Due to: Juels, Catalano, and Jakobsson [58]
Principals: Tabulation tellers TT1, . . . ,TTn, Bulletin board ABB

Ballot boxes VBB1, . . . ,VBBm, Supervisor Sup
Public input: KTT, contents of ABB
Private input (TTi): Private key share xi of KTT
Output: Election tally
Note: This protocol is carried out for each block

1. All VBB i: Post Commit(received votes) on ABB .

2. Sup: Post signed copy of all received VBB commitments.

3. All TTi: Proceed sequentially through the following phases. Each phase has a list (e.g., A,
B, etc.) as output. In each phase that uses such a list as input, verify that all other tellers are
using the same list. Use ABB as a public broadcast channel for any subprotocol that requires
publication of a value; all posts to ABB must (as usual) be signed, and all messages retrieved
from it should have their signatures verified.

Retrieve Votes. Retrieve all votes from all endorsed VBBs. Verify the VBB commitments.
Let the list of votes be A.

Check Proofs. Verify all VotePfs and ReencPfs in retrieved votes. Eliminate any votes with
an invalid proof. Let the resulting list be B.

Duplicate Elimination. Run PET(si, sj) for all 1 ≤ i < j ≤ |B|, where sx is the encrypted
credential in vote B[x]. Eliminate any votes for which the PET returns 1 according to a
revoting policy; let the remaining votes be C.

Mix Votes. Run MixNet(C) and let the anonymized vote list be D.

Mix Credentials. Retrieve all credentials from ABB and let this list be E. Run MixNet(E)
and let the anonymized credential list be F .

Invalid Elimination. Run PET(si, tj) for all 1 ≤ i ≤ |F | and 1 ≤ j ≤ |D|, where si = F [i]
and tj = D[j]. Eliminate any votes (from D) for which the PET returns 0. Let the
remaining votes be G.

Decrypt. Run DistDec on all encrypted choices inG. Output the decryptions asH , the votes
to be tallied.

Tally. Compute tally of H using an election method specified on ABB by Sup. Verify tally
from all other tellers.

4. Sup: Endorse tally
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