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Figure 1: Character-Scale Garments: A character wearing a knit sweater containing 45,960 yarn loops walks forward. By exploiting
spatial and temporal coherence in the contact forces, we focus computation on rapidly deforming parts of the model (model updates in red).

Abstract

Yarn-based cloth simulation can improve visual quality but at high
computational costs due to the reliance on numerous persistent
yarn-yarn contacts to generate material behavior. Finding so many
contacts in densely interlinked geometry is a pathological case for
traditional collision detection, and the sheer number of contact in-
teractions makes contact processing the simulation bottleneck. In
this paper, we propose a method for approximating penalty-based
contact forces in yarn-yarn collisions by computing the exact con-
tact response at one time step, then using a rotated linear force
model to approximate forces in nearby deformed configurations.
Because contacts internal to the cloth exhibit good temporal coher-
ence, sufficient accuracy can be obtained with infrequent updates
to the approximation, which are done adaptively in space and time.
Furthermore, by tracking contact models we reduce the time to de-
tect new contacts. The end result is a 7- to 9-fold speedup in contact
processing and a 4- to 5-fold overall speedup, enabling simulation
of character-scale garments.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling I.6.8
[Simulation and Modeling]: Types of Simulation—Animation

Keywords: knitted, cloth, yarn, contact, adaptive, corotational

1 Introduction

Sheet-based cloth simulation is ubiquitous in animation, visual ef-
fects, and apparel design. Yarn-based simulations promise major
quality improvements for many cloth types, but they are more ex-
pensive to simulate for two reasons. First, sheet models can readily
be coarsened for faster simulation, but yarn models always need
enough detail to describe the shape of the yarn, so reducing the
number of degrees of freedom is not straightforward. Second, sheet
models only generate contact processing work when the sheet col-
lides with objects or folds over and collides with itself, but yarn
models derive their whole behavior from the thousands of self-
collisions within the fabric’s structure. In fact, Kaldor et al. [2008]
report spending the majority of simulation time in contact process-
ing. In this paper, we present a method for accelerating yarn-based
simulation by significantly reducing the cost of contact processing.

Simulating yarn contacts accurately is critical because the structure
of the cloth is formed entirely by the interlacing or interlooping
of the yarns—if contacts are missed and yarns are allowed to pass
through each other, the cloth will unravel.1 In many ways, this
contact-mediated structure of rods in close proximity is a worst-
case scenario for collision processing. Prior work has resolved
these compressible yarn-yarn contacts using stiff penalty forces, re-
quiring small timesteps with an all-pairs evaluation over the entire
yarn at each step [Kaldor et al. 2008].

Fortunately, some key characteristics of yarn models also make
contact processing easier. Internal contacts are coherent: they
tend to persist throughout the simulation, and the local yarn shape
changes slowly (in its local frame of reference), with individual
contacts exhibiting near-rigid motion. Consequently, the contact
force, although stiff, is temporally coherent, suggesting reuse of
contact information over the course of many simulation steps.

1Compare this to hair, where even if collisions are missed and hairs pass
through each other, the resultant state is still a valid system configuration.
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Figure 2: Contact Zoo: Although the space for potential contacts is huge, only a very small fraction of it is actually in contact, as seen in
the contact matrix. Due to the looping nature of knits, though, these contacts can take on a variety of unique shapes, shown with the actual
pairs of points in contact in the contact matrix (in red) and the corresponding contact set (outlined in black). All of these contacts were taken
from the single timestep of the falling scarf shown on the left.

In this paper, we propose a corotational force approximation to the
yarn’s penalty-based contact force. The exact contact response is
computed for a particular configuration, and then a rotated linear
force model is used to approximate the force under small defor-
mations (see Figure 3). Once the shape changes too much, a new
model is built centered at the new configuration. The contact re-
sponse for the cloth is broken into many sub-contacts (see Figure 2),
each involving two contiguous sections of yarn.

Temporal adaptivity is controlled by a single quality parameter that
determines how frequently the contact models are rebuilt—setting
it to zero causes exact force evaluations at every step, resulting in
zero approximation error. A space-time scheduler efficiently finds
new contacting regions while potentially managing tens of mil-
lions of spline segment pairs. Finally, by explicitly tracking contact
features, we also reduce self-collision detection costs for existing
close-proximity yarn segments.

2 Prior Work

Cloth simulation can be divided into two broad categories: sheet-
based models and yarn-based models. Sheet-based models ignore
the yarn-based structure of cloth and approximate the overall behav-
ior as an elastic sheet [Terzopoulos et al. 1987; Baraff and Witkin
1998; Choi and Ko 2002]. These simulators are typically signifi-
cantly faster than yarn-based simulators and tend to work well for
woven fabrics. Their speed and reliability has improved through
enforcing inextensibility [Provot 1995; Goldenthal et al. 2007; En-
glish and Bridson 2008], improved bending models [Bridson et al.
2003; Grinspun et al. 2003], simplified bending models that exploit
isometric sheet deformations [Bergou et al. 2006; Garg et al. 2007],
or more robust collision processing [Volino and Thalmann 2000;
Bridson et al. 2002; Baraff et al. 2003], such that interactive simu-
lations are possible for models of modest complexity.

In contrast, yarn-based simulators use yarns as their primary sim-
ulation primitive and rely on yarn-yarn contact forces to mediate
deformations. These have included models and simulators focused
on the yarn crossings in woven fabrics [Kawabata et al. 1973], mod-
eling plain-weave fabrics like Kevlar [King et al. 2005; Zeng et al.
2006], and simulating different types of woven [Chu 2005] and knit
fabrics [Kaldor et al. 2008]. These simulators automatically cap-
ture nonlinear deformations that are difficult to duplicate in sheet
based simulators, particularly knits, at the cost of a significant in-
crease in computation time. They rely on an underlying model
for thin flexible rods, which have been studied extensively in com-

puter graphics [Pai 2002; Bertails et al. 2006; Theetten et al. 2007;
Bergou et al. 2008; Bergou et al. 2010]. Contacts between rods can
be resolved precisely using inequality constraints [Spillmann and
Teschner 2008], but this does not allow for lateral compression of
soft yarns as penalty-based models do [Kaldor et al. 2008], requir-
ing explicit modeling via additional degrees of freedom.

Our rotated linear model for penalty-based contact forces is related
to corotational finite-element methods commonly used in graph-
ics for solid deformation. Müller et al. [2002] popularized these
techniques in graphics, initially via node-based “stiffness warping,”
then, to overcome undesirable “ghost forces” due to element-level
momentum imbalances, using rotated linear elements [Müller and
Gross 2004] (c.f. [Felippa 2000]). Corotational elements have also
been used for sheet-based cloth simulation [Etzmuss et al. 2003].
Shape-matching methods also use rotated frames to estimate “goal
positions” for deformation forces [Müller et al. 2005; Rivers and
James 2007]. Similar to Müller et al. [2002], our corotational force
model is node based; however, it does not produce ghost forces
since rotated contact sets are composed of contact pairs whose in-
ternal action-reaction forces can produce no net force.

Model reduction techniques have been devised to accelerate sheet-
based cloth and other deformable models in graphics by effectively
reducing the number of simulated degrees of freedom. Effective
methods have been proposed for spatially adaptive mass-spring sys-
tems [Hutchinson et al. 1996], sheet-based cloth models [Villard
and Borouchaki 2005], and rod simulations that resolve challenging
contact configurations such as knot tying [Spillmann and Teschner
2008]; space-time adaptive simulation of deformable models can
resolve localized contacts efficiently for real-time simulation [De-
bunne et al. 2001]; and multi-scale basis refinement can reduce
meshing issues for spatial adaptation [Grinspun et al. 2002]. Un-
fortunately, multi-resolution/adaptive approximations are difficult
for knitted cloth given its complex geometric domain and topology,
high number of degrees of freedom, and widespread self-contact.

Homogenenization techniques have been proposed to coarsen dis-
crete simulation models while resolving inhomogeneous material
response [Kharevych et al. 2009], and to support deformation of
complex embedded geometry [Nesme et al. 2009], but neither
addresses fine-scale internal forces which are contact mediated.
Dimensional model reduction techniques have been proposed to
generate fast, low-rank simulation models for complex geomet-
ric domains [Barbič and James 2005; An et al. 2008] and thin
shells [Chadwick et al. 2009], but knitted cloth motions do not nec-
essarily lie in low-dimensional subspaces, and specifying them a
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Figure 3: The Life of a Contact: Once a new collision is detected,
a linear contact model is built in the current frame. On subsequent
timesteps, the model’s control points are rotated into this reference
frame. If the deformation is small according to our metric, the ap-
proximate force is evaluated, otherwise the model is rebuilt in its
new configuration. If the contact separates too far, it is deleted.

priori for precomputation purposes would be impractical. Recently,
Kim and James [2009] showed how to adapt subspace deformation
models on the fly to avoid precomputation; however, they do not
address contact forces. In contrast to these model reduction tech-
niques, we maintain the number of simulation degrees of freedom
to preserve fundamentally interesting fine-scale yarn deformations.

Cloth self-collision detection (SCD) is commonly performed us-
ing overlap tests accelerated by spatial subdivisions, hash tables, or
bounding volume hierarchies [Teschner et al. 2005]. Unfortunately
many prior SCD acceleration schemes are inherently sheet-based,
e.g., curvature tests [Volino et al. 1995], normal cones [Provot
1997], and chromatic decompositions [Govindaraju et al. 2005].

Identifying and tracking persistent contacts is related to space-time
scheduling and collision processing [Mirtich 2000; Guibas 2004],
which have been widely considered for maintaining proximity in-
formation for moving objects [Hubbard 1995; Gao et al. 2004].
Mirtich’s Timewarp method [2000] investigated related strategies
for collision detection and management of persistent contact groups
for asychronous rigid-body simulation. In contrast, we use synchro-
nized time-stepping to manage space-time collisions, but adaptively
update contact groups and linearize contact-group force models.
For deformable models, Harmon et al. [2009] used asynchronous
contact mechanics and infinitely nested potentials to adaptively
simulate penalty-based contact; however, their emphasis was on
correctness for general scenarios, and not performance for hundreds
of thousands of persistent yarn contacts.

3 Yarn-based Cloth Model

Our underlying yarn-based cloth model is an extension of Kaldor
et al. [2008]. For simplicity we assume a single yarn, but ex-
tending support to multiple yarns is trivial. The centerline of
the yarn is defined by a time-varying cubic Catmull-Rom spline

y(s) =
n+1P
i=0

Bi(s)qi for s∈ [0, n], and q = q(t)∈R3n+3 the con-

trol points of the cubic spline. The yarn is treated as inextensible
with constant radius r, and each segment has a rest length `i.

3.1 Elastic Rods

Our contact model can be used with any rod model. In our sys-
tem, we use Discrete Elastic Rods [Bergou et al. 2008] with a few
modifications. Yarns are represented as inextensible rods with an

isotropic bending response but a non-straight rest configuration. In-
extensibility constraints and bending and twisting energies are com-
puted using a piecewise linear discretization of the rod, while the
contact response force is computed using the Catmull-Rom inter-
polating spline through the vertices of the linear discretization. The
underlying contact force model is identical to Kaldor et al. [2008].

In Bergou et al. [2008], the material frames on each rod segment
were described as a scalar rotation from a zero-twist frame, the
Bishop frame, defined at each edge. For nonisotropic or naturally
curved rods, this zero-twist frame inherently depends on the global
state, and the derivative of the bending energy at any point in the
yarn depends on the position of every prior point. Despite this de-
pendence, the derivative of bending energy can still be computed in
O(n) time instead of O(n2). Unfortunately, we found that recur-
sive bending energy computations were difficult to parallelize, and
very long yarns (such as in garments) could produce large end-to-
end rotations in the reference frame per timestep which can com-
plicate endpoint orientation constraints.

We observe that twist-free reference frames were only used to sim-
plify twist-energy computation—since then the only twisting is due
to the material frame. Instead, our reference frame starts as a
twist-free frame, but every segment’s frame is parallel transported
through time (instead of space) from its previous position. Because
there is no more spatial parallel transport, rod energy computations
have local support and are easily parallelized. Our reference frame
does accumulate twist, but we can account for and correct our twist-
ing energy computation by this additional twist (see Appendix A for
details, or Bergou et al. [2010] for an alternate derivation).

Yarns tend to display significant plastic behavior under deforma-
tion. To approximate this, we use a simple plasticity model on the
rest state of the rod in angular space. If the rest state (represented
as a 2D point) at a segment/bending element pair lies outside the
circle of radius pplastic centered at the current state of that pair, the
rest state is projected onto the boundary of the circle. Similarly, if
the rest state falls outside the circle of radius pmax

plastic centered at the
origin, it is projected onto the boundary of the circle. This allows
for permament deformations of the rest state within some allowable
angular range at each bending element.

3.2 Penalty Contact Forces

We use as our reference contact model Kaldor et al. [2008], which
used a penalty force derived from the contact energy,

E =

Z n

0

Z n

0

κ(s, s′) f(y(s),y(s′)) ds ds′,

f(y,y′) =

(
4r2

‖y−y′‖22
+
‖y−y′‖22

4r2
− 2, ‖y − y′‖ < 2r

0, otherwise

where κ(s, s′) = κcontact `s`s′ . In practice, this integral is dis-
cretized and solved via quadrature over all pairs of bn points, {si}:

E =

bnX
i=0

bnX
j=0

κij wij f(yi,yj)

wherewij are the quadrature weights and b is the number of quadra-
ture evaluations per yarn segment; yi=y(si), and κij =κ(si, sj).
Let S = [0, . . . , bn] be the set of quadrature points. Then this is a
double sum over all quadrature points in the yarn, or a computation
over the set of all elements in S × S, which is exceedingly expen-
sive to compute naı̈vely2. However, many of the points are not in
contact (f(yi,yj)=0) and can be safely skipped (see Figure 2).

2This computation is clearly symmetric since the work over (i, j) is the
same as (j, i), so in practice we only compute the upper triangular part of
this space. We use S × S here for notational simplicity.



3.3 Yarn/Rod Timestepping

For further quality and speed improvements, our yarn simulator
has several notable changes from prior work [Kaldor et al. 2008;
Bergou et al. 2008]. Glue and length constraints are separated and
solved individually using Fast Projection [Goldenthal et al. 2007];
because of the linear discretization, the linear systems are simple
to solve directly (diagonal and tridiagonal, respectively). Only one
phase of nonrigid damping is applied on each timestep, over blocks
of 4 × 4 knit loops, and the damping is no longer always pro-
portional to the nonrigid velocity. For a given block, let k be the
number of control points in the block, and vnonrigid ∈ R3k be the
nonrigid velocity of that block. The applied change to the velocity
is then −vnonrigid min(1,max(hµprop, hµconst

√
k/‖vnonrigid‖2)). At

low speeds, rather than removing a proportional amount of nonrigid
velocity at each step, a constant amount is removed, up to the en-
tire nonrigid velocity; this allows the cloth to come to rest in finite
time, which is an approximation of the complex hysteresis seen in
real cloth. Finally, both damping and object contact are applied af-
ter glue and length constraints to allow the cloth to come to rest;
while this means that the constraints are in principle no longer sat-
isfied exactly at the end of each timestep, we have not noticed any
problems in practice. See Figure 4 for details.

4 Adaptive Contact Linearization

We now describe the adaptive contact linearization force model
used to avoid the penalty-based contact force computation (3.2) at
each timestep. Our approximate contact model divides the colli-
sion region into a set of disjoint contacts and adaptively constructs
simplified models for each contact. These simplified models are
used as a cheap approximation of the true contact force for a set of
configurations near some reference configuration. When the cur-
rent contact configuration strays too far from the reference one, the
contact model is discarded and a new one is constructed on the fly.

Contact Sets: Individual contacts are defined by partitioning S×
S into disjoint sets E,C1, . . . , Cm, where E is empty space, and
Ck is contact set k. We only require that every pair of points (i, j)

C

S

S

1
C2

C3

E 

that are in contact must be in a contact
set: if i, j ∈ S and f(yi,yj) 6= 0, then
there is some contact k such that (i, j)∈
Ck. Contact sets are allowed to be time-
varying, and for the moment we simply
assume that the sets are given; their con-
struction and maintenance are addressed
in §5.2. Given the contact sets, we can
write the collision energy as a sum over
contact features,

E(q) =

mX
k=0

Ek(q) =

mX
k=0

24 X
(i,j)∈Ck

κijwijf(yi,yj)

35 (1)

It follows that the total contact force is a sum over all contacts,

f(q) = −∇qE(q) =

mX
k=0

fk(q), (2)

with each contact’s force a sum over contacting quadrature points,

fk(q) = −∇qEk(q) =
X

(i,j)∈Ck

κijwij∇qf(yi,yj). (3)

Linearized Contact Forces: To avoid the expensive summation
in (3), we can linearize any contact’s force about a reference con-
figuration, q̄k=q(tk), to obtain the approximation

f̃k(q) = fk(q̄k) + K̄k (q− q̄k) ≡ f̄k + K̄kq, (4)

where K̄k is the stiffness matrix of fk at q̄k, and the force offset
is f̄k = fk(q̄k)− K̄kq̄k. If contact Ck involves only c contact-
ing quadrature points, then K̄k has at most O(c2) nonzero entries,
which we compute and store in a dense triangular matrix format
(exploiting both matrix and 3x3 block symmetry), along with f̄k.
Later times, t>tk, can use (4) to quickly approximate fk(q(t)).

Corotational Force Model: Since local contact geometry often
undergoes large near-rigid deformations, we employ a corotational
force approach analogous to [Müller and Gross 2004]. For each
contact Ck, we estimate the nearest rigid transformation of the ref-
erence control points q̄k associated with Ck to the deformed con-
figuration q by first matching the contact’s center of mass and then
finding its rotation Rk using the polar decomposition [Müller et al.
2005; Rivers and James 2007]. We then replace the linear force
model f̃k(q) in (4) by its corotational generalization,

fk(q) ≈ Rk f̃k(RT
k q) = Rk f̄k + RkK̄kR

T
k q, (5)

where Rk ∈ R(3n+3)×(3n+3) is the matrix with the 3 × 3 matrix
Rk repeated on the diagonal, and q-translations omitted since K̄k

annihilates them. Due to sparsity, only Ck-related control points
and forces are evaluated in practice. Because Rk is updated on
each timestep, we warm-start the Jacobi iteration used for the po-
lar decomposition with the eigenvalues/vectors from the previous
timestep [Rivers and James 2007]. By tracking near-rigid motion,
the corotational contact force model (5) can be used longer than (4)
before recomputation is necessary.

Model Invalidation: To avoid using (5) beyond its range of valid-
ity, we invalidate the contact model if it undergoes sufficient non-
rigid deformation. If the current configuration, rigidly transformed
back to the reference frame and denoted q̃k, has strayed too far from
the reference configuration q̄k, we rebuild the linear model about
the current configuration, q. The shape estimate, metric(Ck),
used to indicate contact invalidation is

metric(Ck) = max
i
Mik2r‖(q̃k)i−(q̄k)i‖2/ε2k (6)

where if Ck = [umin, umax] × [vmin, vmax], then Mik is the weight
for control point i in contact k, taken to be

Mik =

umaxZ
umin

|Bi(s)|ds+

vmaxZ
vmin

|Bi(s)|ds,

and εk is the minimum distance between pairs of interacting quadra-
ture points inCk computed when the model was last rebuilt. Again,
due to sparsity we only need to evaluate this metric for control
points related to Ck. When this metric is larger than some user-
supplied tolerance τ , we rebuild the model; we use τ =0.004–0.3.
This metric is cheap to evaluate, allows greater movement for con-
trol points that weakly (or don’t) influence contact Ck, and causes
more frequent invalidations for close-proximity contacts.

5 Contact Adaptation

The contact algorithm is broken up into several phases, which can
be broadly categorized into “contact detection” and “contact evalu-
ation.” The algorithm is summarized in Figure 4.

5.1 Contact Representation

From the description in §4, there is an obvious performance trade-
off in the construction of the contact sets Ck. Choosing to make
smaller sets means that they are cheaper to update, but produces
more sets to process, and increases the cost of set maintenance, for
instance to determine when sets are overlapping.



f (t+1) = evaluate other forces()

for each segment i
rasterize to grid(i)

for each new segment/cell pair i, j

create schedule(i, grid(j))

for each schedule entry sched

process schedule(sched)

coalesce contacts()

for each contact Ck

if (metric(Ck) > τ ) rebuild model(Ck)

f (t+1) = f (t+1) + compute force(Ck)

q̇uncons = q̇(t) + hM−1f (t+1)

q̇glue = satisfy glue constr(q(t) + hq̇uncons)

q̇length = satisfy length constr(q(t) + hq̇glue)

q̇damp = nonrigid damping(q̇length)

q̇(t+1) = object contact(q(t) + hq̇damp)

q(t+1) = q(t) + hq̇(t+1)

quasistatic frames()

Figure 4: Algorithm Overview

Our implementation strikes a balance between these competing
concerns. Contact sets are represented by bounding boxes in S×S,
and contain an estimate of a single contiguous contact between two
parts of the yarn along with a specified amount of padding α to aid
in detecting contact sliding (see Figure 5). Overlap tests are thus
trivial to implement, and it provides a simple rule for when and
how to merge contact sets. At the same time, in testing it seems to
reasonably balance the number and size of contact sets while only
including a relatively small number of non-contacting points.

5.2 Contact Detection

At each timestep, contact detection explores the empty contact set,
E, to find newly colliding points and either (a) incorporates them
into an existing contact if they overlap, or (b) creates a new con-
tact. Given the sheer size of E, efficiency is of paramount impor-
tance. We do this through a combination of broad-phase spatial
hashing of spline segments to find potential new contacts, and a
space-time collision scheduler that can efficiently track millions of
close-proximity spline segment-segment pairs.

Due to the sheer number of quadrature points and potential pairs,
the scheduler tracks potential collisions between pairs of spline
segments, each of which contains b quadrature points. However,
our contacts exist at the quadrature point level, which means that
between any two segments, some pairs of quadrature points may
already belong to a contact set while others do not. Thus, in or-
der to completely explore E while not spending time rediscovering
already-known contacts, each schedule entry also stores an 8 × 8
bitmap, represented as a single long integer, which allows finer con-
trol over which pairs of quadrature points are already part of some
existing contact and which still need to be checked. Finally, each
schedule entry i stores a conservative minimum distance bound dti
which represents a best (but conservative) estimate for the closest
possible distance between the two segments at time t.

Contact detection is divided into four phases: grid rasterization,
newcomer scheduling, schedule processing, and contact coalescing

Grid Rasterization: The first step rasterizes each spline segment
into a hashed uniform grid centered on the cloth’s center of mass,
with cell width γ. The AABB of each spline segment is com-
puted in parallel by solving three quadratic equations to obtain
its maximum and minimum extent in each of the three dimen-
sions. Grid cells overlapping the AABB are marked as occupied
by the segment. A segment not already belonging to a grid cell

is flagged as a newcomer to the cell. At this time, the mini-
mum and maximum movement and change in movement (the fi-
nite difference of movement) per timestep of the spline segment
over the previous step are also computed (by solving six more
quadratics) for later use by the scheduler. Note that if two seg-
ments occupy disjoint sets of grid cells, this serves as a certifi-
cate that the segments cannot be in contact. Since this is per-
formed for all segments on every timestep, this serves to filter
out any possible contacts between segments for which this is true.

0 0.5 1 1.5

On the right is a histogram of maximum
AABB edge length for segments, nor-
malized to the grid size of 0.6cm, for
a single timestep of the sweater; nearly
all segment bounding boxes are smaller
than a single grid cell.

Newcomer Scheduling: In parallel, we check each cell new-
comer against the cell’s other segments to see if we already have
a collision schedule entry for that newcomer-segment pair; if not,
one is created and marked for immediate processing (by marking
its minimum distance bound as negative). Collision schedule en-
tries are deterministically assigned to one of the two participating
segments for processing.

Space-Time Schedule Processing: Once all possible schedule
entries are created, the schedules are looped over in parallel and
executed. When an entry is determined to need full processing,
the scheduler examines all active pairs of quadrature points on the
two segments, computes the true minimum distance, and sets dti
accordingly.

For schedule entry i, the minimum distance estimate dti between
the pair of segments is used to determine when full processing is
needed. As long as the minimum distance is positive, then they
are known to not be in contact. The scheduler updates this min-
imum distance estimate and only processes the entry again when
the estimate becomes negative. This minimum distance estimate
is updated using the minimum and maximum movement computed
during grid rasterization to determine the maximum relative move-
ment ∆xi between the two segments over the previous timestep.
One simple approach updates the minimum distance estimate each
timestep according to the rule dti = dt−1

i − ‖∆xi‖2. This distance
bound is guaranteed to always be less than or equal to the actual
minimum distance, and so entries are guaranteed to be processed
on time. Experimentally, this also succeeds in filtering out the vast
majority of possible all-pairs checks per timestep, but it does incur
the cost of examining and updating dti for each schedule entry every
timestep to determine if it needs to be processed further.

This cost of simply examining each schedule entry can begin to
dominate the overall cost of schedule execution, however. To
compensate for this, we divide the schedule into a set of bins,
where each bin λ ∈ [0, λmax] will now only be examined every 2λ

timesteps. Each segment now also stores the minimum and max-
imum movement ‖∆xλi ‖ over the previous 2λ timesteps. When
bin λ is examined, each schedule i in the bin updates its minimum
distance bound dti = dt−2λ

i − ‖∆xλi ‖2, i.e., using the maximum
relative movement over the time period in which it was not being
examined. After either examining or processing a schedule, we as-
sign it to a bin based on the current minimum distance, maximum
relative movement ∆xλi , and maximum relative change in move-
ment ∆2xi; we solve the quadratic equation

−di + ‖∆xλi ‖
t

h
+

`
t
h

´2
+ t

h

2

`
‖∆2xi‖+ ω

´
= 0,

to find the minimum nonnegative root, then assign to bin
max(0, blog2

t
h
c). Because the relative velocity could change ar-

bitrarily between checks, as in Hubbard [1995] we allow for some



bounded deviation in relative change in movement ω. When the rel-
ative change in movement between the two segments is larger than
‖∆2xi‖ + ω, our predicted bin is no longer valid and we need to
immediately update d(t)

i and reselect a new bin. However, we still
wish to avoid having to examine every schedule pair each timestep.
Instead, we monitor the local change in movement of each seg-
ment, and when it is more than ω

2
from some reference change in

movement, all schedules associated with that segment are immedi-
ately scheduled to have their minimum distance estimates updated,
and the reference change in movement is updated to be the cur-
rent change in movement. This conservatively reschedules contacts
before their bin assignment becomes incorrect, while avoiding any
loops over all schedules every timestep.

Contact Coalescing: The output of the schedule processor is a
list of quadrature points (i, j) ∈ S × S that are currently in con-
tact. The coalescer then takes these pairs (i, j) and groups them
together into new contiguous contacts by floodfilling in S × S the
axis aligned bounding box (i − α, j − α) through (i + α, j + α).
Any overlapping contact sets (either new or pre-existing contacts)
are merged into new AABBs until no more merges are required.
This results in contact sets with a buffer of non-contacting pairs α
around the detected contact, which allows the contact processor to
detect when to resize a particular contact.

5.3 Contact Evaluation

After detecting new contacts, all contacts must be evaluated. This
involves looping over the contact sets Ck in parallel, computing
the best rigid transformation and evaluating the contact-invalidation
metric. If the metric is not violated, we evaluate the current approx-
imate model (5) via matrix-vector multiplication and vector addi-
tion. Because of the semi-regular looping structure of cloth, con-
tiguous contacting regions tend to be small and localized, leading
to small contact sets (which are designed to cover a single contact
each); in practice, contact matrices K̄k typically have between 24
and 63 rows/columns.

If the metric (6) is violated for contact k, we rebuild the linearized
contact model (f̄k, K̄k) for q̄k=q, which involves looping over all
(i, j) ∈ Ck to accumulate first and second derivatives of f(yi,yj).
Once this is done, corotational forces are evaluated using (5). While
looping over the set, we also compute the minimum and maximum
points imin, imax, jmin, jmax that are in contact, and afterwards update
Ck to cover [imin−α, imax +α]× [jmin−α, jmax +α] (see Figure 5).
If there are no contacting points in the set we mark it as contribut-
ing zero force, and once the minimum inter-point distance becomes
larger than some threshold (we use 2.1r) then Ck is deleted and the
pairs of points in Ck become part of the empty region, E.

We are also able to use our contact set structures to efficiently model
additional yarn behaviors at negligible cost. As a simple example,
we insert a small number (4) of stiction springs for each contact set
to model the interactions due to entangled fibers. These springs are

(a) (b) (c)
Figure 5: Contact Resizing A contact (a) slides between updates
(b), shifting the set of points in contact. A buffer allows us to detect
this during update and readjust the contact to the new bounds (c).

parameter description value
τ approximation tolerance 0.004 – 0.3
α flood-fill size 3
γ grid size 0.6 cm
λmax num. schedule bins 8
ω movement change bound 0.0006 cm/timestep2

h timestep 1/16200s – 1/24000s
b quadrature points / seg. 11
kcontact contact stiffness 3000 – 4500
r yarn radius 0.125 cm
pplastic ; pmax

plastic yarn plasticity 0.01 ; 2.5
µconst ; µprop nonrigid damping 500 ; 1500 – 4500

Table 1: Parameters used during simulation.

inserted at fixed locations within the contact set, and are broken and
rebuilt once their energy exceeds a specified value.

S
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Following this contact adaptation, we must
determine whether adapted contacts are now
overlapping. We divide S into a set of bins
(in our implementation, each bin is of size 8)
and place eachCk into each bin for which its
first dimension overlaps. We then loop over
each bin, scanning for overlaps only among
sets in that bin, and merging any we find.
For example, note that C2 and C3 are over-

lapping, which causes them to be merged together, which will then
cause a cascading merge with the resultant merged contact and C4.
In principle, contacts should also be checked to determine if they
have in fact split–that is, one contact set is now representing mul-
tiple contiguous contacts–since the cached dense stiffness matrix
might become large with many zero entries. Because cloth has such
regular structure, however, in practice we have not found the need
to split contact sets into subpieces since contact splitting is a rare
occurrence, and when it does happen the contacts stay reasonably
close to each other (see Figure 2 for an example of a contact split),
and so the matrices stay reasonable in size.

6 Results

Our simulator is in Java, multithreaded, and was run on a Mac
Pro machine with two 4-core 2.93GHz Intel Xeon processors with
16GB of RAM. We compare against a reference implementation
that computes the contact force via collision checks of a bound-
ing hierarchy. In order to estimate scheduler performance, we
also provide comparisons where the tolerance was zero (so mod-
els are rebuilt on every timestep) and stiffness matrix computation
was disabled, providing a good approximation of the best possible
speed obtainable when solving the contact forces exactly on each
timestep. Timings and performance breakdowns are in Table 2 and
Figure 6. Note that the average cost of contact coalescing was neg-
ligible (< 1ms) in all simulations and is thus omitted from timings.

In order to verify our model, we compare the results of a scarf
falling on a plane using both our reference implementation and our
ACL model with a variety of tolerances (see Figure 9). Because for
this example trivial deviations in force can result in drastically dif-
ferent behavior, variations in the final configuration are expected.
For reasonable tolerances, we observe the simulations behave sim-
ilarly and convey the same quality of motion. At higher tolerances
the approximation becomes evident resulting in different material
behavior, although it still is plausible. Note that the speedup we
are able to achieve levels off, indicating that the vast majority of
our time is spent on scheduling and force evaluation, and not model
regeneration. Comparing the timings for this example with the tim-
ings for a similar example reported by [Kaldor et al. 2008] (which



model loops segments tolerance contacts updates contact eval overall (per 1/30s frame)
old new speedup old new speedup

scarf 3,240 26,240 0.004 23,186 3.7% 254ms 41.7ms 6.1x 4m 10s 58.4s 4.3x
0.04 23,475 0.46% 30.9ms 8.2x 50.2s 5.0x
0.1 24,296 0.19% 30.5ms 8.3x 50.6s 4.9x
0.3 29,037 0.04% 32ms 7.9x 50.8s 4.9x

sack 41,272 334,464 0.04 262,062 0.30% 3,063ms 366ms 8.4x 33m 55s 7m 27s 4.6x
afghan 54,340 438,485 0.04 365,305 0.47% 3,995ms 600ms 6.7x 44m 8s 10m 34s 4.2x
sweater 45,960 370,650 0.04 295,702 0.21% 3,665ms 405ms 9.1x 40m 16s 8m 6s 5.0x

Table 2: Model and scene statistics and timings. All numbers and timings are an average number over 2s of simulation.
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reference force
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damping / objects
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reference force
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reference force
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Figure 6: Performance comparison: On the left is a performance breakdown of the various phases of our model, as compared to the time
taken for the reference implementation. On the right is the breakdown of the costs of the phases of the simulator as a whole, again compared
to the time taken for the force evaluation of the reference implementation, where ACL force is our adaptive contact linearization model.

reported times of 10m 42s per frame) on similar hardware, our ref-
erence implementation takes 6m 52s per frame and our new model
takes 1m 47s per frame.

However, the main benefit of our proposed ACL forces is the sim-
ulation of significantly larger yarn models, consisting of 41,000 to
54,000 knit loops (compare to the 3,240 loops in the scarf). As the
sack (Figure 8) is filled with 90 rigid balls, our ACL forces local-
ized model updates (exaggerated in red) primarily around where the
spheres contact the cloth resulting in contact computation speedups
from 7.5x to 9.4x (averaged over 5 frame intervals), and 4.3x to
4.8x overall. Our afghan (Figure 7) falls onto a sphere, causing high
speed self-contacts across large portions of the cloth and large scale
global deformations; this is the most challenging scenario for our
model, resulting in speedups from 4.5x to 8.4x in contact computa-
tion and 3.3x to 4.7x overall. Finally, a wooden mannequin wearing
a sweater walks forward (Figure 1), showing efficient simulation
of character-sized garments in complex contact configurations; we
achieve speedups from 7.5x to 10.5x in contact computation and
4.5x to 5.3x overall. The size of these models challenges the scal-
ability of exploring empty space, but for instance on the sweater
our scheduler limits the number of overall schedule entries being
tracked to an average of 14 million, with on average only 1.2 mil-
lion examined and 77,000 processed per timestep.

We note that in all scenes the percentage of model updates per
timestep is extremely low, on the order of 0.5% per timestep, cor-
responding to more than 200 timesteps between invalidation for the
mean contact set, or around three times per 1/30s frame. Thus, even
though our timesteps are small, the temporal coherence is such that

contact linearization and invalidation would still be effective even
with a timestep 10x larger. In addition, even with relatively conser-
vative tolerances the cost of model updates in an amortized sense
was negligible, as seen in the cost for the various scarves; if larger
timesteps were used and model updates became a performance bot-
tleneck, the tolerance could be increased while still producing rea-
sonable results.

7 Conclusion

We have demonstrated a method for speeding up contact force eval-
uations for yarn-based cloth models by breaking up the contact
problem into a set of disjoint regions and adaptively constructing
local models for each region to approximate the true force response.
This results in typical speedups of 7x-9x over naı̈ve force evalua-
tion, which brings the cost of force evaluation in line with other
phases of the simulation, while still maintaining similar (and in
many cases, visually identical) motion.

We believe that this contact-level approach leads to many interest-
ing future possibilities for both quality and performance improve-
ments that are difficult to solve using naı̈ve contact evaluation. In
particular, we think that further additions may help address two
of the most pressing problems in yarn-based simulation: modeling
hysteresis and taking larger timesteps. Hysteresis and damping is
a critical component to get right in order to achieve accurate cloth
simulation, but it is currently addressed via damping of non-rigid
motion. Adding plasticity in at the contact level is more physically
plausible (due to fiber entanglement), and our contact set formula-



tion provides a primitive on which to model these effects, as in our
simple approach of adding stiction springs.

Current timestep restrictions are due to two factors: the stiffness in
the collision response, and, more crucially, the inability to detect
and respond when the yarns slip through each other. This is a catas-
trophic simulator failure, since it can lead to the entire structure
unravelling, and is currently addressed through small timestepping
to ensure sufficient time for contact force response. Moving contact
evaluation to a higher level (contact sets instead of collision points)
should allow us to detect when this occurs. Ultimately, we hope
that this will lead to the ability to adaptively timestep yarn-based
models and automatically step down when the timestep becomes
too aggressive and results in slip-through. Semi-implicit integra-
tion of contact groups might also address penalty-based stiffness to
enable large timesteps [Baraff and Witkin 1998; Mirtich 2000].
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A Non-Zero-Twist Reference Frames

We follow the notation of Bergou et al. [2008]. We eliminate the
requirement that the reference frame (ui,vi) have zero twist, and
instead update each ui at time t + h by parallel transporting the
previous ui(t) through time (i.e. by parallel transporting ui from
the vector ei(t) to ei(t+ h)). We denote the twist from (ui,vi) to
(ui+1,vi+1) as θ̂i+1. This twist can be computed on each timestep
by computing the angle between P (ui) and ui+1, i.e., the twist be-
tween the parallel transported ui (which will have zero twist rela-
tive to ui) and ui+1, taking care to handle relative twists greater
than 2π properly.

Next, we must redefine the twisting and bending energy (and re-
spective derivatives) to include these changes. The modified twist-
ing energy is

Etwist =

nX
i=1

ktwist
(θi − θi−1 − θ̂i)2

¯̀
i

It is straightforward to compute ∂Etwist
∂θi

because ∂θ̂j

∂θi
=0 for all i, j.

For ∂Etwist
∂xi

, we obtain

∂Etwist

∂xi
=

nX
j=0

∂Etwist

∂θj
∂θj

∂xi
+
∂Etwist

∂θ̂j
∂θ̂j

∂xi

where ∂θj

∂xi
= 0 for all i, j because each frame is independently

parallel transported through time; ∂θ̂
j

∂xi
is not necessarily zero since

it depends on P (ui) and ui+1. However, because ui and ui+1 are
updated via parallel transport through time (i.e. with zero twist),
this corresponds precisely to the gradient of holonomy of P (ui)
relative to ui (§6 of [Bergou et al. 2008]):

∂θ̂i

∂xi−1
=

(κb)i
2|ēi−1|

∂θ̂i

∂xi+1
= − (κb)i

2|ēi|

∂θ̂j

∂xi
=

(
−
“

∂θ̂i

∂xi−1
+ ∂θ̂i

∂xi+1

”
, i = j

0, otherwise.

As for the bending energy, the definition itself does not change, but
its derivatives do. Because each ui is parallel transported through
time, there is no need to account for the variation in the Bishop
frame when computing the derivative. As a result, the gradient of
the material-frame curvature (eq 11 in [Bergou et al. 2008]) is now

∇iωjk =

„
(m

j
2)T

−(m
j
1)T

«
∇i(κb)k.

Because ∇i(κb)k is nonzero only for k − 1 ≤ i ≤ k + 1, the
gradient of the material-frame curvature is nonzero only for k−1 ≤
i ≤ k + 1, and so the summation over all points in the bending
energy is now unnecessary—summation merely needs to occur over
the three-vertex stencil for each bending element.



Figure 7: Afghan: Our adaptive linearized contact model performs well even for cloth undergoing large global and local deformations.

Figure 8: Sack: Model updates are focused on the regions under-
going deformation, as seen here when struck by falling spheres. Pure
red corresponds to≥ 13 updates over the 1/30s frame (540 timesteps)

Reference

Tolerance = 0.04 Tolerance = 0.1 Tolerance = 0.3

Tolerance = 0.004

Figure 9: Scarf Comparisons: A scarf falling on a flat plane for a
variety of tolerances. Our model faithfully captures the same qualita-
tive movement even for aggressive tolerances.


