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Figure 1: A Rube-Goldberg contraption that demonstrates many challenging multibody contact sounds. A noisy block feeder (Left) with
flexible tubes ejects marbles into a double helix of plastic chutes (Middle), which causes a cup to fill up, lifting a lever that drops a bunny into
a runaway shopping cart (Right) producing familiar clattering and clanging sounds due to deformable micro-collisions. Our approach can
accurately resolve modal vibrations and contact sounds using an asynchronous, adaptive, frictional contact solver.

Abstract
Contact sound models based on linear modal analysis are com-
monly used with rigid body dynamics. Unfortunately, treating vi-
brating objects as “rigid” during collision and contact processing
fundamentally limits the range of sounds that can be computed, and
contact solvers for rigid body animation can be ill-suited for modal
contact sound synthesis, producing various sound artifacts. In this
paper, we resolve modal vibrations in both collision and frictional
contact processing stages, thereby enabling non-rigid sound phe-
nomena such as micro-collisions, vibrational energy exchange, and
chattering. We propose a frictional multibody contact formulation
and modified Staggered Projections solver which is well-suited to
sound rendering and avoids noise artifacts associated with spatial
and temporal contact-force fluctuations which plague prior meth-
ods. To enable practical animation and sound synthesis of numer-
ous bodies with many coupled modes, we propose a novel asyn-
chronous integrator with model-level adaptivity built into the fric-
tional contact solver. Vibrational contact damping is modeled to
approximate contact-dependent sound dissipation. Results are pro-
vided that demonstrate high-quality contact resolution with sound.
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1 Introduction
Sound models based on linear modal vibrations are widely used to
efficiently synthesize plausible contact sounds for so-called rigid

bodies in computer animation and interactive virtual environments.
Unfortunately, there still remain a number of significant contact-
related deficiencies that limit the realism of modal contact sounds
in practice. To begin with, for speed and simplicity, modal sound
models are usually just excited by using contact force impulses
from rigid body contact solvers. In reality, there is no such thing as
a “rigid” object, and the same small vibrations that produce sound
also play an important role in producing rich contact events: micro-
collisions, chattering, squeaking, coupled vibrations, contact damp-
ing, etc. Ignoring contact-level vibrations is the source of many
sound-related deficiencies, as these small vibrations can be visually
inconsequential but aurally significant. For example, pounding on
a seemingly “rigid” dinner table can shake dishes—and may also
upset your friends (see Figure 2). Frictional contact and deforma-
tion coupling is also important for sound; for example, slip-stick
phenomena is responsible for many familiar squeaking and scrap-
ing sounds, e.g., fingernails scraping on a chalkboard. Resolving
these vibrational contact effects is challenging due to the need to
resolve deformable collisions and contact at high temporal rates.

Even in seemingly rigid scenarios, such as an object resting on a
plane, current contact solver implementations can generate tem-
porally incoherent contact impulses which lead to sound artifacts,
such as resting objects that strangely humm or buzz when integrated
at near-audio rates. These artifacts are a consequence of the fun-
damental non-uniqueness of rigid body contact forces (e.g., static
indeterminacy) which can lead to point-like and nonphysical con-
tact force (traction) distributions. Additionally, rigid-body contact
impulses can exhibit nonphysical temporal fluctuations, which lead
to noise-related sound artifacts (especially with iterative contact so-
lution techniques) that must be dissipated artificially.

Moreover, the sound of a resting object should also depend on its
contact state, and how contacts oppose surface vibrations. For ex-
ample, a coffee mug exhibits distinctive vibrational damping when
placed in different orientations on surfaces (see Figure 4). This con-
tact damping phenomena involves complex vibrational and contact
coupling effects, and is ignored in current sound models or handled
in ad hoc ways, e.g., “increase damping when in contact.”

In this paper, we propose the first approach to address all of these
concerns and enable richer contact sounds (see Figure 3). We adopt
a flexible multibody dynamics formulation, wherein each seem-
ingly rigid object is allowed to deform with linear modal vibrations.



Figure 2: Vibrational coupling makes a racket! A rigid bunny
dropped onto a table causes the table to deform rapidly, which in
turn causes the resting dishes to receive contact impulses and go
flying—with noticeable sound. In contrast, a traditional rigid body
simulation (not shown) bounces the bunny off the perfectly rigid
table without disturbing any dishes or causing much sound.

Deformable collision processing at near audio rates is used to gen-
erate frictional contact problems to resolve perceptually important
coupling and micro-collisions (see Figures 1 & 2). We use a mod-
ified Staggered Projections algorithm to solve the frictional con-
tact problems [Kaufman et al. 2008], with modifications to avoid
solver noise due to spatial and temporal incoherence in both the
generation of contact points and the computation of contact forces.
Vibrational contact damping phenomena are approximated using
a time-varying lumped contact damping matrix to attenuate vibra-
tions during sound synthesis.

Since multibody frictional contact solves with thousands of coupled
modes at near-audio rates are computationally intractable for sound
synthesis, we propose a novel mode-adaptive asynchronous integra-
tor which is capable of identifying and integrating low-frequency
vibration modes in the contact solver (see Figure 8). Methods for
adding and removing modes from the contact-level simulation are
described, as well as noise-free methods for simulating all audible
modes during subsequent sound synthesis. Our implementation is
able to handle dozens of bodies with thousands of audible modes in
a practical manner for high-quality offline sound synthesis.

2 Related Work

Contact Sound Synthesis: Rendering sounds synchronized
with animation has a long history in graphics [Takala and Hahn
1992; Gaver 1993]. Modal sound synthesis methods generate plau-
sible rigid body contact sounds efficiently, and were popularized by
van den Doel and Pai [1996] who proposed using analytical mod-
els of linear modal vibration to produce point-contact sounds in in-
teractive virtual environments. Modal sound models can be con-
veniently estimated from recorded sounds and measurements [Pai
et al. 2001], or estimated using numerical techniques for linear
modal analysis [Shabana 1990; O’Brien et al. 2002]. For animation,
simply running dynamics simulations at graphics rates can greatly
limit the range of sounds achievable. Van den Doel et al. [2001] re-
alized the perceptual importance of resolving micro-collision forces
sampled at (near) audio rates, and explicitly distinguished them
from the so-called “dynamics force” sampled at graphics rate, but
the range of resolvable contact phenomena was limited by a point-
like contact model. O’Brien et al. [2002] used tetrahedral finite
element simulations to synthesize modal sounds for rigid bodies
excited by contact forces from graphics simulations; however the
rigid model cannot capture deformable contact events.

Other developments in modal contact sound synthesis include
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Figure 3: Overview: Multibody simulation is performed using an
asynchronous adaptive contact solver (Top). This simulation yields
animation data as well as impulses and object motion data which
are fed to the sound synthesis algorithm running in a separated
pass (Bottom). When synthesizing modal sound, input impulses are
redistributed to enhance temporal coherence and eliminate noise,
and contact-dependent damping is applied.

speed-accuracy trade-offs for interactive sound [Doel et al. 2004;
Raghuvanshi and Lin 2006; Bonneel et al. 2008; Ren et al.
2010], acoustic transfer models to improve realism of spatialized
sounds [James et al. 2006; Chadwick et al. 2009], and techniques
for synthesizing brittle fracture sounds [Zheng and James 2010].
Chadwick et al. [2009] considered subspace integration techniques
to resolve nonlinear mode-coupling effects in thin shells, but treated
objects as rigid for collision processing. In contrast, we address
fundamental deficiencies in contact resolution methods which cur-
rently limit our ability to animate multibody systems with sounds.

Non-modal sound synthesis for computer animation was explored
in [O’Brien et al. 2001] using an explicitly time-stepped large-
deformation finite element model to simulate the surface response
of an object due to external forces, potentially being able to resolve
more detailed contact events. However, explicitly time-stepped de-
tailed FEM models at audio rates is expensive, and the stiff mate-
rials, e.g., steel, can result in onerous timestep restrictions. In con-
trast, we resolve small modal deformations in multibody contact,
but only simulate a subset of vibration modes by using an efficient
adaptive, asynchronous contact algorithm.

Contact-dependent damping for sound synthesis is not well ad-
dressed. Previous works often used a static parametric model for
vibration damping [O’Brien et al. 2002; Zheng and James 2010], or
apply some additional ad hoc damping when objects are in con-
tact, e.g., with the ground [Chadwick et al. 2009]. Zheng and
James [2010] introduced additional contact damping for objects at
rest to mask noise introduced by the iterative contact solver. In con-
trast, we resolve frictional contact, and propose a viscous model to
approximate spatially and temporally dependent contact damping.

Rigid and Deformable Simulation: Resolving frictional contact
with rigid bodies has long been recognized as a challenging prob-
lem in graphics and engineering, in part due to the inherent dif-
ficulty of contact discontinuities, nonlinear Coulomb friction, and
solution non-uniqueness [Brogliato 1999; Stewart 2000]. For flex-
ible multibody simulations, e.g., where modal vibrations are in-
cluded, additional difficulties arise, especially for high-frequency
vibrations [Wasfy and Noor 2003]. Early methods for visual simu-
lation of rigid and deformable objects explored penalty-based meth-
ods [Hahn 1988; Moore and Wilhelms 1988]. While penalty con-
tact methods can generate low-noise contact impulses for rigid body
dynamics ( [James et al. 2006]), these methods can suffer from sta-



Figure 4: Contact-dependent vibrational damping is readily ap-
parent by tapping a coffee mug at the same location while in dif-
ferent contact configurations. Our contact sounds differ because
contact damping opposes modal vibrations differently.

bility issues that necessitate extremely small timesteps, and chal-
lenges exist for practical modeling of frictional contact and modal
chattering. More accurate models of rigid body contact resolution
have traditionally motivated Linear Complementarity Programming
(LCP) formulations. Unfortunately solving LCP contact problems
can be hard computationally, and for certain problems solutions
may not exist or be unique when friction is considered [Lötstedt
1982]. Developments in graphics tackled rigid body contact using
acceleration-level LCP formulations [Baraff 1990; Baraff 1991],
however solution existence could not always be guaranteed [Baraff
1993]. Velocity-level LCP formulations were later proposed which
can always find a solution [Stewart and Trinkle 1996; Anitescu and
Potra 1997]. More recently the iterative velocity-level LCP meth-
ods have seen greater use in practice due to increased performance
in exchange for degraded accuracy and stability [Guendelman et al.
2003; Erleben 2007]. Alternate quadratic program (QP) formula-
tions of the LCP are also possible [Moreau 1966] (but are often
non-convex and not easy to solve), and have been exploited by some
works in graphics [Milenkovic and Schmidl 2001; Kaufman et al.
2008]. Unfortunately, rigid body and flexible multibody contact
methods devised for computer graphics and engineering were never
designed for physically based sound synthesis in mind, and their
straightforward application leads to problems with noise, accuracy,
and efficiency (discussed further in §3). While low-noise contact
simulation has been demonstrated in certain scenarios, e.g., for
continuous single-point contact simulation involving smooth sur-
faces [van den Doel et al. 2001; Kry and Pai 2003], we address
the need for sound-aware contact resolution methods for practi-
cal sound synthesis involving rigid and flexible multibody systems.
Our method leverages prior work on the Staggered Projections (SP)
method [Kaufman et al. 2008]; however, simply running SP at au-
dio rates—despite being prohibitively expensive—is unsatisfactory
for sound synthesis since the method suffers from accuracy issues
which introduce noise in the final sound. Our proposed method uses
different contact generation strategies, and applies a contact filter-
ing algorithm to achieve temporally coherent and spatially well-
distributed contact impulses with cleaner sounds.

Asychrony and Adaptivity: Only a few methods for simulat-
ing rigid and/or deformable objects provide temporal adaptivity or
asynchronous integration. Mirtich [2000] introduced Jefferson’s
timewarp algorithm [Jefferson 1985] into graphics, and enabled
asynchronous rigid body simulation whose timestep size is adapted
based on accuracy requirements. In comparison, our method can
asynchronously evolve both rigid and deformable objects, and
can adaptively switch between rigid and deformable simulations.
Mode-culling techniques avoid synthesizing sounds for inaudible
modes, but are different from adaptive modal contact resolution.
Kim and James [2009] adapt the modes of a nonlinear subspace

deformation model but do not consider contact. For non-modal de-
formable simulation, hierarchical multi-resolution methods accel-
erate simulations using spatial [Grinspun et al. 2002; Capell et al.
2002] and temporal adaptation [Debunne et al. 2001], whereas we
exploit the transient nature of high-frequency modes to provide
temporal adaptivity. Harmon et al. [2009] consider the more com-
plex case of asynchronous contact mechanics wherein numerous
deformable elements are integrated asynchronously with timesteps
dependent on element type, proximity, and contact attributes. In
contrast we only consider body-level asynchrony wherein each de-
formable model is synchronized with its contact group, and the
timestep size is determined by its highest frequency mode.

3 Low-Noise Contact Resolution

In this section we briefly review multibody contact and the Stag-
gered Projections (SP) solver [Kaufman et al. 2008], then discuss
its noise-related limitations for sound synthesis (in §3.2), and pro-
pose a modified SP solver which produces low-noise contact im-
pulses efficiently (in §3.3). We refer the reader to [Brogliato 1999;
Kaufman et al. 2008] for more details.

3.1 Background on Contact Problems

Following the notation of Kaufman et al. [2008], we consider a
multibody contacting system represented by the generalized posi-
tion coordinate q, generalized velocity q̇, and mass matrix M. The
world-frame position of point i on some object is given by the map-
ping xi(q) which describes rigid body motion and linear modal
deformations. Contacts in the system are described by the set C.
Given a contact k ∈ C between two points i and j with a normal
direction nk (Figure 5a), the corresponding generalized normal di-
rection is given by nk = ΓTknk where Γk is the relative velocity
Jacobian defined as Γk = ∇xi − ∇xj . The generalized normal
contact impulses can be represented by the vector c = Nα, where
N = [n1n2 . . . n|C|] and α is the vector of magnitudes of normal
contact impulses.

(a) (b)

Figure 5: Contact geometry and friction cone sampling

The isotropic Coulomb friction on the tangential plane can be lin-
earized using fk = Tkβk, where Tk is the matrix whose column
vectors uniformly sample the friction disk (Figure 5b), and βk is
the vector of impulse magnitudes along each of the sampled direc-
tions. This polyhedral friction cone simplifies the Coulomb friction
inequality into

eTβk ≤ µkαk, s.t. βk ≥ 0, (1)
where µk is the coefficient of friction, and αk is the normal contact
impulse magnitude at k and e = [1 . . . 1]T [Stewart and Trinkle
1996]. The generalized friction impulses on all of the contacts can
be written as f = Dβ, where D = [ΓT1 T1 . . . Γ

T
|C|T|C|] and β =

[βT1 . . . β
T
|C|]

T . Using this notation, we can discretize the Euler-
Lagrange equation (with timestep size h) as follows,

M
(
q̇t+1 − q̇t

)
= hg(qt, q̇t) + hftext + Nαt+1 + Dβt+1 , (2)

where g, the quadratic velocity vector function, provides the Cori-
olis and centrifugal forces, and fext describes the external forces.



Figure 6: Non-unique contact impulses can produce noise since
fluctuations in resting contact forces, while causing no motions,
produce changing modal forces which can produce noise, e.g., rest-
ing objects that “hum.”

The SP method solves this equation using a predictor-corrector
method. First, it computes a velocity prediction q̇p by solving

M
(
q̇p − q̇t

)
= hg(qt, q̇t) + hftext. (3)

Next, it solves
M
(
q̇t+1 − q̇p

)
= Nαt+1 + Dβt+1 (4)

to correct the velocity, which involves estimating q̇t+1 by simul-
taneously solving the following two quadratic programming prob-
lems iteratively,

q̇t+1 = arg min
v

(
1

2
vTMv − vT (Mq̇p + Dβt+1)

)
,

s.t. NT v ≥ 0

(5a)

βt+1 = arg min
β

(
1

2
βTDTM−1Dβ + βTDT (q̇p + M−1Nαt+1)

)
,

s.t. ETβ < diag(µ)αt+1, β ≥ 0,
(5b)

where (5a) is the contact problem for determining the normal im-
pulse, and (5b) is the friction problem that determines the frictional
impulse. Here E is the matrix form of all the vectors e in (1) such
that each column k has ones in rows corresponding to entries in
the subvector βk ∈ β and zeros in all other elements; αt+1 in the
second problem (5b) is a vector of normal contact impulse magni-
tudes, which is the Lagrange multipliers of the constraints of the
first problem (5a). These QP problems are essentially the dual form
of the LCP formulation modeling the contacting systems. We dis-
cuss methods for solving these large sparse QP problems later (§6).

3.2 Non-unique Contact Impulses and Noise

There are fundamental difficulties when solving (5) [Brogliato
1999], which are problematic for sound synthesis:

1. First, given a fixed βt+1, it can be proved that equation (5a)
has a unique solution, since the mass matrix M is positive
definite 1. However, the Lagrange multipliers of the con-
straints, i.e., the contact impulses, are not necessarily unique
because, according to the Karush-Kuhn-Tucker (KKT) condi-
tion of (5a), the Lagrange multipliers should satisfy

Nαt+1 = M(q̇t+1 − q̇p)− Dβt+1. (6)
This equation could have non-unique solutions when N is rank
deficient, and rank-deficient N is almost inevitable when the
number of contacts is large enough. As a result of this non-
uniqueness, the contact impulses can be temporally incoher-
ent, and using them to excite the sound model can lead to

1Cottle et al. [1992] proved that the LCP form of (5a) has a unique solu-
tion if M is a P-matrix—a matrix where all principal minors have positive
determinants. A positive definite matrix is a P-matrix, however, P-matrices
are not necessarily positive definite.

timestep t timestep t+1 timestep t+2

time (s)

time (s)

(a) Velocity-based Contact Sounds

time (s)

time (s)

(b) Our Position-based Contact Sounds

Figure 7: Noisy contact forces on a static curved slab: (Top) At
timestep t, the non-zero contact forces appear at the left end of the
slab; at timestep t + 1, they are at the right end of the slab; at the
next time step, the non-zero forces come back to the left end, and
so on so forth. This microscopic contact cycling leads to noise (a)
generated rather than pure silence (b) as we expected in this case.

audible noise artifacts (see Figure 6).

2. The second difficulty comes from the friction problem (5b),
in which the Hessian matrix DTM−1D tends to be singular
when the number of contacts is large—note that the size of
the problem is proportional to the number of contacts. Solv-
ing such large rank-deficient quadratic programming prob-
lems will quickly slow down the simulation.

We therefore seek to estimate a temporally coherent set of active
contacts of minimal size.

3.3 Estimating Temporally Coherent Active Contacts

Contact Generation: In standard multi-body simulation, a con-
tact is generated when (i) collision between two objects is detected
and (ii) their relative normal velocity at the collision point is nega-
tive. These criteria can produce plausible motion effects; however,
they tend to also generate noisy contact forces which is problematic
for sound synthesis. For example, consider the curved slab resting
on the ground with multiple contact points (Figure 7). The tra-
ditional contact generation produces non-zero forces which cycle
among multiple contact points as the simulation proceeds: contact
forces generated to satisfy constraints at the current contact points
at the current timestep can cause other contact constraints to be vi-
olated at subsequent timesteps.

To avoid contact generation noise, we propose to generate contacts
whenever intersections are detected, irrespective of the relative con-
tact velocity. This criteria can generate more contacts than the stan-
dard one, leading to more expensive contact problems. In particu-
lar, the friction solve (5b) becomes harder since the problem size is
proportional to the number of contacts. We therefore propose the
following contact filtering scheme to reduce the number of contacts
and maintain temporal coherence.

Contact Reduction: We maintain active contacts by applying the
active set method [Gill et al. 1981] when solving the contact prob-
lem (5a). When solutions are found, the active set method also
identifies the active constraints for that problem. The resulting con-
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Figure 8: Mode-adaptive contact simulation (ruler example)

straint Lagrange multipliers, which correspond to contact forces,
become quite sparse. Since zero contact force always leads to zero
friction force, we can turn off all inactive contacts to reduce the size
of any subsequent friction problem (5b). To ensure temporally co-
herent active-contact selection (as well as faster SP convergence),
we “warm start” the SP solver with the solution from the previous
timestep [Kaufman et al. 2008]. To initialize the contact filtration
process, we can first solve (5a) using an interior point method, then
use that as an initial guess for the active set method. On average, we
observe about one order of magnitude speed up over the simulation
without contact reduction.

4 Asynchronous Adaptive Contact Solver

By simulating flexible objects we can resolve more interesting dy-
namic behaviors, such as contact coupling and chattering. These
behaviors can enable more realistic visual effects and richer sounds.
However, deformable simulation is much more expensive than
purely rigid simulation. Furthermore, the simulation timestep size
is restricted by the highest modal vibration frequency due to the sta-
bility condition—the higher frequency, the smaller the timestep has
to be. For high-quality sound synthesis where all audible modes are
desired, this simulation cost can be prohibitive.

Time (s)

Fortunately higher frequency vibrations tend to
damp more quickly, and are often perceptu-
ally important for only a short time (see in-
set time-series). Afterwards, simulating only
lower frequency modes (or even rigid objects)
can suffice to capture perceptually important
dynamics. We propose to exploit this tran-
sient nature of higher frequency vibrations by
adaptively selecting the simulated modes and
asynchronously integrating the system using
the largest timestep possible (see Figure 8). To
avoid diminishing returns, we can also limit
the maximum mode frequency used in contact
simulation, leaving higher frequency modes to
be considered only during a subsequent sound
synthesis phase (§5). An overview of our asyn-
chronous adaptive integration scheme is out-
lined in Algorithm 1. Next we will describe each of its steps.

Algorithm 1: Overview of asynchronous adaptive integration
begin

while simulation is not over do
ao← queue.pop()
foreach obj 6= ao do

interpolate state(obj, ao.timestamp)
end
detect collision()
identify contact groups()
foreach contact group cg do

advance to next step(cg); // Algorithm 2
end
foreach contacting object obj do

increase timestamp(obj)
reschedule(obj)

end
end

end

Asynchronous Integration: First, consider a simulation without
contacting bodies. To evolve the objects independently, each of
them has a private timestamp indicating its local simulated time.
This timestamp is similar to the concept of local virtual time in
the rigid timewarp method [Mirtich 2000]; it is used to schedule
the objects in a priority queue. At each simulation step, the object
at the top of the queue has the earliest timestamp and is popped
to advance to its next timestep. If it is not in contact, we simply
reschedule it into the priority queue after advancing its state and
increasing its timestamp. Otherwise, we need to resolve collisions
before rescheduling it.

Collision Detection: In this section, we refer the object currently
popped from the priority queue the active object. To detect colli-
sions, all the other objects need to synchronize to it. These objects
are all advanced no less than the active object, since they are deeper
in the priority queue. We therefore synchronize them by linearly
interpolating their states at the time of the active object. While re-
quiring a little extra memory since each object now needs to main-
tain two states from last two consecutive timesteps, linear inter-
polation introduces almost no performance overhead in the simu-
lation. Next the standard discrete-time collision detection is per-
formed using oriented bounding box (OBB) hierarchies for rigid
objects [Gottschalk et al. 1996]; for modal deformation, we use
Bounded Deformation Tree ideas to quickly update the OBB hier-
archy (with fixed bounding-box orientation) [James and Pai 2004].

Contact Groups: Based on the detected intersections, objects are
grouped into contact groups [Mirtich 2000]; the component ob-
jects of a contact group intersect with each other and are separated
from other contact groups. Therefore they must be integrated as
a unit. We identify these contact groups by detecting independent
connected sets in the contact graph [Guendelman et al. 2003].

State Rollback: For any object that is more advanced than the ac-
tive object, if it is not in contact at all its interpolated state is simply
discarded, and it remains at its current advancement; otherwise, it
must belong to some contact group and has to be integrated within
that group. Therefore, we roll back its current state by replacing it
with its interpolated state (see Figure 9 for an illustration). Then
each contact group is integrated independently using an adapted
timestep size according to the algorithm described in the rest of the
section (See Algorithm 2).



Figure 9: Asynchronous Advancement of Objects: (a) At time
t1, object A is selected as the current active object. It is in contact
with a more advanced object C. Then C synchronizes with A using
its interpolated state at t1, and advance from there together with A;
(b) Next D is at the top of the queue, and is in contact with B at t2.
B rolls its state back to t2, and advances its state with D; (c) Then
E is processed, which is in contact with A and C. Therefore E, A
and C advance together to the next timestep.

4.1 Contact Group Advancement

We solve the contact-friction problem described in section 3.1
to advance a contact group. In particular, for velocity predic-
tion (Equation 3), we use explicit forward Euler method and the
Newmark integrator [Wriggers 2006] to integrate rigid motion and
modal deformation respectively; velocities are then corrected using
the SP iterations. The simulated vibration modes, i.e. the simu-
lated degree of freedom (DOF), are determined based on the current
modal vibrating state–a mode that is largely damped can be safely
ignored from simulation. However, the current vibrating state of
a mode cannot be determined without solving the contract-friction
problem. Therefore, we first estimate the current normal contact
impulses (line 2 of Algorithm 2), then use the estimated impulses to
determine the simulated DOF (line 3), and finally solve the adapted
problem (line 5-6).

Normal Contact Impulse Estimation: The normal contact im-
pulses are estimated by solving a single QP problem (5a), wherein
we use the friction impulses from the last timestep assuming tem-
poral coherence. This leads to one extra QP solve at each timestep.
Fortunately, this QP is well-posed and is much cheaper to solve
compared to the full SP algorithm. The timestep size used in the
solve is determined as follows.

Timestep Determination: Due to the integration stability condi-
tion, the timestep size of integrating a contact group is restricted
by the highest simulated vibration frequency fh of its component
objects. In practice, we found that a timestep size ∆t = 1/(6.5fh)
produces stable modal deformation. In addition, a default timestep
size ∆tmax is used for rigid bodies, giving us the timestep size of a
contact group as ∆t = min(1/(6.5fh),∆tmax). For contact im-
pulse estimation mentioned above, we use the fh value from last
timestep (line 1). To finally advance the contact group, fh is up-
dated (line 4) after the simulated DOF is adapted.

Adaptation (DOF Increase): In the following description, we
denote the maximum number of simulated modes of an object as
Nm. Assume these modes are labeled from 1 to Nm, ordered from
lower to higher frequencies; and let s denote the current number of
simulated modes (modes 1 . . . s). To adapt the simulated DOF of an
object, we first check if s should be increased. Large external im-
pulses can excite high-frequency modes, thus activating them in the

Algorithm 2: Adaptive timestep for contact group C :
advance to next step(contactgroup)

begin
ts←determine timestep size(C)1
fc ←contact solve(C, ts)2
adapt dof(C, fc)3
ts←determine timestep size(C)4
if cull friction solve(C) then

frictionless contact solve(C, ts)5
else

staggered projections(C, ts)6
end

end

simulation. We measure the excitement of modes by considering
the time derivative of the modal vibration equation, i.e.

v̈ + Cv̇ + Kv = UT ḟ . (7)
The impulse response of this equation measures the velocity ex-
citement of modes due to external impulses, and has the magni-
tude proportional to UT ḟ . The time derivative ḟ is estimated us-
ing (fc − fn−1)/∆t, where fc is the estimation of normal contact
impulse described above, and fn−1 is the normal contact impulse
from last timestep. Then we approximate the velocity excitement
vector using

v̂ = UT
fc − fn−1

∆t
, (8)

and find the highest mode j such that v̂j ≥ δu, where δu is a
parameter to control the upgrade criterion. In practice, we use
δu = 1E − 5 for all the adaptive simulations. We increase the
simulated modes up to j if j > s.

Adaptation (DOF Decrease): If s is not increased, we further
check if it could be decreased to enable faster simulation. A mode
could be deactivated if its modal vibration energy has been largely
dissipated. The modal energy of mode i is computed using

Ei =
1

2
(q̇2
i + kiq

2
i ) , (9)

where q and q̇ are its modal vibrational displacement and veloc-
ity, and ki is its mass-normalized modal stiffness. We then find the
highest mode j such that Ej ≥ δd, where δd is a parameter to con-
trol the downgrade criterion. δd = 1E− 7 is used in our examples.
We decrease the simulated modes down to j if j < s. If none of the
modes has modal energy larger than δd, then the modal deformation
is deactivated, and only rigid motion is considered.

Culling Friction Solves: We note that the contact-friction prob-
lem gets largely simplified for frictionless contacts. Not only is this
because the friction problem (5b) is fundamentally harder to solve
than the contact problem (5a) but also no iteration is needed at all
in this case. When objects are resting without any static friction,
ignoring friction introduces no error. In simulations, this tends to
happen frequently, since objects always tend to become static due
to energy dissipation. We detect such frictionless contact groups by
applying the following heuristics: given a contact group possessing
a set of contacts denoted by C and a set of objects denoted by O,
its friction solve can be turned off if it simultaneously satisfies two
conditions: ∑

i∈C

|v(t)
i | < δt, (10)

where v
(t)
i is the predicted relative tangential velocity (after inte-

grating using (3)) at contact i, and δt is a positive value close to



zero (1E-8 in practice); and∑
j∈O

‖f(n−1)
j ‖ < δf , (11)

where f
(n−1)
j is the generalized friction impulse of object j from

last timestep, and δf is also a small value (1E-10 in practice). Note
that these heuristics are conservative: (10) guarantees no relative
movement in the contact group, while (11) ensures no friction force
applied in the last timestep. In our experiments, we observe 6%-
24% additional performance improvement.

5 Sound Synthesis

In this section, we describe how the contact simulation fits into our
two-pass sound synthesis pipeline (§5.1), and how impulses gen-
erated during contact resolution are spatially redistributed prior to
exciting all-frequency modal sounds (§5.2), then used to parame-
terize our modal contact damping model (§5.3).

5.1 Sound Synthesis Pipeline

Aside from the sound-aware contact resolution approach, our sound
synthesis pipeline is similar to the approach used in [Zheng and
James 2010]. Specifically, solid objects are represented using tetra-
hedral meshes; modal vibration models are precomputed using the
finite element method; the modal sound model is excited by contact
impulses obtained from dynamic simulation; sound radiation is ap-
proximated using Helmholtz acoustic transfer models represented
via precomputed multipole expansions, and used with head related
transfer functions (HRTF) for sound rendering.

While our method could generate sound as the simulation advances,
in practice we use a two-pass implementation. The first pass sim-
ulates the dynamics while recording the time series of contact im-
pulses to disk. The second pass synthesizes sound by integrating
the modal vibration equations of excited objects. Each object’s
recorded contact impulses are first spatially redistributed (§5.2) be-
fore determining modal excitations, and then used to determine
each mode’s contact damping (§5.3). To support integration of nu-
merous modes, mode-level parallelism is exploited. Overall the
second pass is much faster than the first dynamics pass (See Ta-
ble 2). Once the expensive dynamics is computed, we can quickly
resynthesize the sound, e.g., to efficiently tune sound-related damp-
ing parameters, such as α, β and γ in (19) which are perceptually
important [Klatzky et al. 2000].

5.2 Impulse Redistribution

The algorithms of §3 and §4 described how to generate temporally
coherent low-noise force impulses; however, for efficiency, these
impulses are applied only at a minimal number of active contacts
selected by the active set method (see Figure 10a). Applying these
nonphysically sparse impulses to the modal sound model leads to
increased noise in the synthesized sound which we would like to
avoid. Fortunately we can again exploit the non-uniqueness of the
impulse solution to redistribute contact impulses after each simula-
tion timestep to obtain a more uniform spatial distribution (see Fig-
ure 10). We emphasize that these redistributed impulses are only
used for sound synthesis, and do not affect the simulated motion–
which uses sparse contact impulses for speed.

At the end of each timestep, let ᾱ and β̄ denote the normal contact
and friction impulse magnitudes, respectively, as a result of solving
(5); the associated contact and friction impulses are

c = Nᾱ and f = Dβ̄. (12)

(a) Without refinement (b) With refinement

Figure 10: Impulse Refinement: A curved slab is sitting on the
ground. The orange arrow bars indicate contact force distribution
with their length proportional to the magnitude of the forces. (a)
The quadratic programming solve somewhat arbitrarily selects only
a few contacts to be active; (b) our impulse refinement algorithm
produces more uniformly distributed forces among all the contacts.

Our adjusted impulse distribution can be written as
α = ᾱ+ NNkα and β = β̄ + NDkβ (13)

where NN and ND are the orthonormal matrices spanning the null
space of N and D, respectively; we obtain these matrices using
the LAPACK [Anderson et al. 1999] routine geqp3. Since both
NNN = 0 and DND = 0, the impulse redistribution does not
change the total impulses c and f, and thus does not affect the sim-
ulated dynamics. To make these more uniformly distributed, we
solve a QP problem for kα and kβ :

arg min
kα,kβ

1

2

(
‖ᾱ+ NNkα − αt−1‖2 + ‖β̄ + NDkβ − βt−1‖2

)

s.t.

ᾱ+ NNkα ≥ 0

β̄ + NDkβ ≥ 0

E
(
β̄ + NDkβ

)
≤ diag(µ) (ᾱ+ NNkα)

(14)

where αt−1 and βt−1 are the contact and friction impulse mag-
nitudes from the previous timestep. Note that this QP problem is
defined for a single object, and therefore each can be solved inde-
pendently. The problem size is much smaller than in (5), and these
solves add only a little overhead to the overall simulation, e.g., only
2%-10% extra cost is observed. However, it results in computed
sounds with much less noise (see Figure 11).

5.3 Contact-dependent Modal Damping

Given the distributed contact forces for sound synthesis (from §5.2),
we now proceed to efficiently approximate contact-dependent
damping forces (recall Figure 4). Prior sound synthesis meth-
ods typically use a velocity-proportional Rayleigh damping model
where the damping matrix is a linear combination of the mass and
stiffness matrices, αM +βK, and α and β are material-dependent
positive scalars [Shabana 1990]. Our contact damping model be-
gins by considering simple viscous dampers at each contact point
(see Figure 12) where the viscous coefficient is proportional to
the contact force magnitude estimated from dynamic simulation.
Specifically, given point contact k with normal direction nk and
contact force magnitude ck, its vibrational velocity along both nor-
mal and tangential directions are

v
(n)
k = nkn

T
k Ukq̇; v

(t)
k = (I − nkn

T
k )Ukq̇ (15)

respectively, where Uk ∈ R3×r is the r-mode displacement subma-
trix corresponding to point k. The viscous contact damping force



- 0

- 250

Figure 11: Clearer sounds with impulse refinement: Contact-
impulse noise can result in muddier spectral responses (Top),
whereas the spectrogram of sound generated using impulse refine-
ment (Bottom) exhibits less noise, e.g., compare modal frequency
lines in highlighted region (See smooth rocking example from Fig-
ure 10).

can be modeled as
dk = γck(v

(n)
k + µv

(t)
k ) = γck

(
µI + (1− µ)nkn

T
k

)
Ukq̇ ,

(16)
where µ is the coefficient of friction, and the positive scalar γ is a
material-dependent parameter controlling the strength of damping
forces. With this model, the generalized damping force for contact
k can be written as

UTk dk = γckUTk

(
µI + (1− µ)nkn

T
k

)
Ukq̇ ∈ Rr. (17)

To express in matrix form, we define

G ≡
∑
k∈C

ckUTk

(
µI + (1− µ)nkn

T
k

)
Uk . (18)

where C denotes the set of point contacts at the current simulation
step. Then the total effective modal damping of the vibration is

C = UT (αM + βK)U + γG. (19)
Here α, β and γ are all material dependent constants (see Table 1
for values used in the examples). Note that the contact damping
term above is also symmetric positive definite, which guarantees it
will dissipate energy.

Unfortunately, due to G this damping matrix is non-diagonal, and
couples all vibration modes together thereby leading to vastly more
expensive modal dynamics integration costs for sound synthesis,
e.g., O(r2) versus O(r) costs for r modes. Fortunately, we ob-
serve that we can still obtain phenomenologically similar results
by simply ignoring off-diagonal elements of G, and thus preserve
a linear-time modal sound synthesis phase. Therefore the contact
damping of mode m is simply γGmmq̇m, where the diagonal ma-

Figure 12: Modified viscous contact dampers are used to approx-
imate mode-dependent contact-damping phenomenon.

Figure 13: Ruler and tuning fork examples

trix coefficient is
Gmm = γ

∑
k∈C

ckUTk,m

(
µI + (1− µ)nkn

T
k

)
Uk,m, (20)

where Uk,m ∈ R3 is the displacement at contact k of modem. Note
that this damping term depends on the current contact force ck and
modal displacement Uk,m, and therefore captures spatial and tem-
poral dependencies. In practice, we compute the contact damping
coefficient Gmm at each simulation timestep, and cubically inter-
polate them for use in an IIR filter for modal sound synthesis.

6 Results

We list all material related parameters used in our examples in Ta-
ble 1. Simulation statistics are given in Table 2. All reported tim-
ings are based on our implementation on a Linux system with an
8-core Intel Xeon X5570 CPU. Please see our video for all sound
and animation results, and related comparisons.

Material Density Young’s Poisson’s Damping
(kg/m3) modulus(GPa) ratio α β γ

Ceramic 2700 7.4E+10 0.19 6 1E-7 3E-2
Polystyrene 1050 3.5E+9 0.34 30 8E-7 4E-4

Steel 7850 2E+11 0.29 5 3E-8 3E-1
MDF 615 4E+9 0.32 35 5E-6 9E-3
Wood 750 1.1E+10 0.25 60 2E-6 5E-4

Table 1: Material Parameters: The table was made with medium
density fiberboard (MDF).

Example Surface tetrahe- DOF Time Dynamics Sound Sound
Vertices dra (s) Cost (hr) Cost (s) Modes

Ruler 5760 18860 108 2.0 0.08 7.2 305
Table 362550 2836215 132 2.2 4.8 22.2 1005
Mug 29718 161543 6 3.0 0.12 5.3 64

Tuning Fork 6601 44076 6 2.0 0.08 4.3 30
Pipes 185912 910765 138 12.2 6.3 15.7 842

Marble Tracks 188864 310844 426 35 9.6 32.4 3822
Shopping Cart 215150 992355 186 4.0 4.7 14.2 2060

Table 2: Example Statistics: Maximum degrees of freedom (DOF)
for rigid and modal dynamics. Adaptive dynamics simulations used
a highest simulated vibration frequency of fh = 5000 Hz. Conse-
quently the minimum timestep size is around 3.07E-5s, except for
the two purely rigid examples (mug and tuning fork) which used a
timestep size of 0.001s. Sound synthesis uses all modes below a 20
kHz cutoff, except for the shopping cart where 12 kHz was used.

Ruler Twang: We simulated a comedic ruler “twang” sound. We
fixed one end of a ruler near the edge of a table (see Figure 13).
When excited by a single impulse, the ruler starts chattering against
the table, producing a distinctive “twang” sound. Next we move the
ruler as it vibrates, changing its contact positions against the table.
The changing contact configuration and movement cause varying
contact coupling between the modes which leads to a characteris-
tic (and funny) rising-pitch ruler twang. This example highlights
the strength of our simulation, since these sound effects could not
be synthesized without resolving micro-collision events accurately.



Figure 14: Contact filtering for fast low-noise contact sound:
The stack of plates and other objects generate a large number of
contacts at each timestep. Our contact filtering method (§3.3) can
effectively cull most contacts, producing fewer and more temporally
coherent contacts.

Figure 15: Mode-adaptive contact simulation of a table (72
modes max) and 10 rigid objects (dishes and bunny) greatly re-
duces the number of active table modes (max 72) except for impact
events.

Despite the short timescale and rapid collisions, the method is still
able to make use of mode adaptation (see Figure 8).

Table: We dropped a heavy rigid body bunny onto a table (fixed
to the ground) which had a stack of dinner plates and bowls on it.
This example demonstrates the perceptual importance of resolving
vibrational coupling for both visual and sound realism (see Fig-
ure 2). Using a traditional rigid-body simulation, the table does not
deform and thus the kitchenware stays static since no elastic en-
ergy can be transmitted by the rigid-body model. In our simulation,
however, the stiff table deforms a tiny amount, and consequently all
the kitchenware on the table is excited, and even bounced into the
air when a heavy bunny is dropped on the table. The audible differ-
ence is clear and dramatic. Despite our asynchronous adaptive sim-
ulator often only simulating a small number of total modes, it can
still resolve these rich vibrational coupling effects (see Figure 15);
comparing to our non-adaptive simulation, we observed about 2.6X
speedup. This example also illustrates the low-noise sound genera-
tion of our method and contact filtering (see Figure 14)

Coffee mug: To demonstrate our contact damping model, we
simulated a coffee mug being tapped at a fixed position with differ-
ent contact orientations (see Figure 4). For validation, we compared
our synthesized sounds with recordings of a real mug experiment to
demonstrate qualitatively similar damping effects.
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Figure 16: Histogram of timestep size (“Rube-Goldberg” exam-
ple) demonstrates that very small timesteps are used rarely, e.g., to
resolve transient high-frequency modes.

Tuning fork: We also demonstrate contact damping using a tun-
ing fork dropped on the ground (see Figure 13). The tuning fork can
ring for a long time when excited by an impulse and not in contact.
However, the ringing rapidly dissipates when the tuning fork is in
contact with the ground.

Rube-Goldberg Contraption: This example (see Figure 1)
demonstrates the ability of our simulator to handle more compli-
cated animations. It consists of three parts: (1) a block feeder
with flexible marble-loaded tubes that eject marbles; (2) a myr-
iad of plastic marble tracks that guide marbles to fall into a wood
cup, which is attached to a raised lever, which will eventually lift
a bunny and let it fall into a shopping cart; (3) the shopping cart
then descends a bumpy incline and hits a curb. To aid in timing and
construction, we simulated the three parts separately, using ending
conditions from the previous stage as initial conditions for the next
stage.

The flexible tubes barely touch the block feeder. Because of the
friction forces, the tubes are deformed as the feeder moves. When
the tubes deform sufficiently, the friction forces cannot maintain
the deformation, and interesting squeaking sounds are produced.
To model the friction sounds of the block feeder against the table,
we perturb the normal directions on the bottom of the feeder us-
ing Gaussian noise, analogous to the normal maps used in [Ren
et al. 2010]. The double-helix marble runs illustrate the efficiency
of our adaptive simulation: we observed a 6.8× speedup over non-
adaptive simulation due to the fewer active modes (see Figure 16
and 17). The small metal balls have lowest modal frequencies well
above 20 kHz, so all ball impact sounds (“clicks”) were approxi-
mated using a recorded metal-ball sound.

Solving large-scale sparse QP problems: We use third-party
QP solvers in our implementation. Unlike [Kaufman et al. 2008],
we can not use the robust QP solver referred to as “QL” [Schit-
tkowski 2005] since it only supports dense QP which become im-
practical for larger problems involving numerous modes. Unfortu-
nately, in our experience, none of the large-scale sparse QP solvers
are robust enough to successfully solve all of the problems gener-
ated by our contact simulations: they can fail to find optimal solu-
tions on feasible problems. Since their failure cases are often rare
and different, our practical solution was to use two solvers: the
GALAHAD package’s QPC routine (galahad.rl.ac.uk), and
KNITRO (www.ziena.com/knitro.htm). Both of them im-
plement the active set method and the interior point method. In our
implementation, we first try to solve using the QPC routine, then, if



Figure 17: Mode-adaptive contact simulation

it fails, we switch to the active set method in KNITRO. In very rare
cases, the second try also fails, then we change to the interior point
method implemented in the QPB routine in GALAHAD. Using this
scheme, we could find optimal (or occasionally only near optimal)
solutions to all contact problems.

7 Limitations and Future Work

We have proposed a detailed approach for contact resolution which
is able to synthesize a new range of challenging sound phenomena,
such as vibration-induced chattering and contact damping, as well
as to avoid deficiencies in current practice, such as contact-solver-
induced noise. We have also proposed an adaptive asynchronous
contact solver which makes it possible to efficiently simulate cou-
pling of rigid and modal objects via frictional contact. As a result,
we have enabled high-quality sound synthesis for a range of previ-
ously unexplored sound phenomena.

Our approach and implementation are not without limitations, and
there are many opportunities for future work. While it is clear that
speed-accuracy trade-offs can always be made, we are interested
in faster methods which retain accuracy. Robustness of the fric-
tional contact solver is dependent on our ability to solve large-scale
sparse quadratic programs robustly, and current QP solvers need
improvement2. Our post-dynamics impulse refinement step gen-
erates friction impulses for the sound phase which are not guar-
anteed to satisfy the maximum dissipation optimality conditions.
Our method involves several user-specific parameters, such as for
adaptivity, which although straightforward to set in our examples,
may be difficult to tune in more complex cases. Further studies are
needed into the simulation of squeaking and other high-frequency
coupling phenomena. Modal analysis provides only a partial theory
for contact sounds, since very small objects, such as marbles, have
vibration frequencies which can far exceed our hearing limits, yet
they still produce audible contact “clicks.” Generalizing contact,
sound and radiation models to support larger deformation scenarios
is a major unsolved problem for modal sound synthesis. Our cur-
rent implementation exhibits triangle faceting artifacts, which can
be a problem for rolling phenomena [van den Doel et al. 2001].
Finally there is more to computing multibody contact sounds than
just simulating vibrations: multibody radiation effects can also play
a significant role in the resulting sound. For example, the sound of
a spoon falling into a mug is strongly affected by the mug’s cavity
resonance, but current single-body acoustic transfer models [James
et al. 2006; Chadwick et al. 2009; Zheng and James 2010] and

2In order to spur algorithmic developments in the QP solver community,
a range of challenging QP test problems arising from our simulations will
be made available on our website.

large-scale room acoustics techniques [Raghuvanshi et al. 2010] do
not entirely suffice.
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